參數資料
型號: DSP16410C
英文描述: TVS 400W 7.0V UNIDIRECT SMA
中文描述: DSP1629數字信號處理器
文件頁數: 75/373頁
文件大?。?/td> 5643K
代理商: DSP16410C
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁當前第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁第229頁第230頁第231頁第232頁第233頁第234頁第235頁第236頁第237頁第238頁第239頁第240頁第241頁第242頁第243頁第244頁第245頁第246頁第247頁第248頁第249頁第250頁第251頁第252頁第253頁第254頁第255頁第256頁第257頁第258頁第259頁第260頁第261頁第262頁第263頁第264頁第265頁第266頁第267頁第268頁第269頁第270頁第271頁第272頁第273頁第274頁第275頁第276頁第277頁第278頁第279頁第280頁第281頁第282頁第283頁第284頁第285頁第286頁第287頁第288頁第289頁第290頁第291頁第292頁第293頁第294頁第295頁第296頁第297頁第298頁第299頁第300頁第301頁第302頁第303頁第304頁第305頁第306頁第307頁第308頁第309頁第310頁第311頁第312頁第313頁第314頁第315頁第316頁第317頁第318頁第319頁第320頁第321頁第322頁第323頁第324頁第325頁第326頁第327頁第328頁第329頁第330頁第331頁第332頁第333頁第334頁第335頁第336頁第337頁第338頁第339頁第340頁第341頁第342頁第343頁第344頁第345頁第346頁第347頁第348頁第349頁第350頁第351頁第352頁第353頁第354頁第355頁第356頁第357頁第358頁第359頁第360頁第361頁第362頁第363頁第364頁第365頁第366頁第367頁第368頁第369頁第370頁第371頁第372頁第373頁
Data Sheet
June 2001
DSP16410B Digital Signal Processor
Agere Systems Inc.
Agere Systems—Proprietary
Use pursuant to Company instructions
19
4 Hardware Architecture
(continued)
4.2 DSP16000 Core Architectural Overview
The DSP16410B contains two identical DSP16000
cores. As shown in
Figure 2 on page 21
, each core
consists of four major blocks: system control and cache
(SYS), data arithmetic unit (DAU), Y-memory space
address arithmetic unit (YAAU), and X-memory space
address arithmetic unit (XAAU). Bits within the
auc0
and
auc1
registers configure the DAU mode-controlled
operations. See the DSP16000 Digital Signal Proces-
sor Core nformation Manual for a complete description
of the DSP16000 core.
4.2.1 System Control and Cache (SYS)
This section consists of the control block and the
cache.
The control block provides overall system coordination
that is mostly invisible to the user. The control block
includes an instruction decoder and sequencer, a
pseudorandom sequence generator (PSG), an inter-
rupt and trap handler, a wait-state generator, and low-
power standby mode control logic. An interrupt and trap
handler provides a user-locatable vector table and
three levels of user-assigned interrupt priority.
SYS contains the
alf
register, which is a 16-bit register
that contains AWAIT, a power-saving standby mode
bit, and peripheral flags. The
inc0
and
inc1
registers
are 20-bit interrupt control registers, and
ins
is a 20-bit
interrupt status register.
Programs use the instruction cache to store and exe-
cute repetitive operations such as those found in an
FIR or IIR filter section. The cache can contain up to 31
16-bit and 32-bit instructions. The code in the cache
can repeat up to 2
16
– 1 times without looping over-
head. Operations in the cache that require a coefficient
access execute at twice the normal rate because the
XAAU and its associated bus are not needed for fetch-
ing instructions. The cache greatly reduces the need
for writing in-line repetitive code and, therefore,
reduces instruction/coefficient memory size require-
ments. In addition, the use of cache reduces power
consumption because it eliminates memory accesses
for instruction fetches.
The cache provides a convenient, low-overhead loop-
ing structure that is interruptible, savable, and restor-
able. The cache is addressable in both the X and Y
memory spaces. An interrupt or trap handling routine
can save and restore
cloop
,
cstate
,
csave
, and the
contents of the cache. The
cloop
register controls the
cache loop count. The
cstate
register contains the cur-
rent state of the cache. The 32-bit
csave
register holds
the opcode of the instruction following the loop instruc-
tion in program memory.
4.2.2 Data Arithmetic Unit (DAU)
The DAU is a power-efficient, dual-MAC (multiply/accu-
mulate) parallel-pipelined structure that is tailored to
communications applications. It can perform two dou-
ble-word (32-bit) fetches, two multiplications, and two
accumulations in a single instruction cycle. The dual-
MAC parallel pipeline begins with two 32-bit registers,
x
and
y
. The pipeline treats the 32-bit registers as four
16-bit signed registers if used as input to two signed
16-bit x 16-bit multipliers. Each multiplier produces a
full 32-bit result stored into registers
p0
and
p1
. The
DAU can direct the output of each multiplier to a 40-bit
ALU or a 40-bit 3-input ADDER. The ALU and ADDER
results are each stored in one of eight 40-bit accumula-
tors,
a0
through
a7
. Both the ALU and ADDER include
an ACS (add/compare/select) function for Viterbi
decoding. The DAU can direct the output of each accu-
mulator to the ALU/ACS, the ADDER/ACS, or a 40-bit
BMU (bit manipulation unit).
The ALU implements 2-input addition, subtraction, and
various logical operations. The ADDER implements
2-input or 3-input addition and subtraction. To support
Viterbi decoding, the ALU and ADDER have a split
mode in which two simultaneous 16-bit additions or
subtractions are performed. This mode, available in
specialized dual-MAC instructions, is used to compute
the distance between a received symbol and its esti-
mate.
The ACS
provides the add/compare/select function
required for Viterbi decoding. This unit provides flags to
the traceback encoder for implementing mode-con-
trolled side-effects for ACS operations. The source
operands for the ACS are any two accumulators, and
results are written back to one of the source accumula-
tors.
The BMU implements barrel-shift, bit-field insertion, bit-
field extraction, exponent extraction, normalization, and
accumulator shuffling operations.
ar0
through
ar3
are
auxiliary registers whose main function is to control
BMU operations.
The user can enable overflow saturation to affect the
multiplier output and the results of the three arithmetic
units. Overflow saturation can also affect an accumula-
tor value as it is transferred to memory or other
register. These features accommodate various speech
coding standards such as GSM-FR, GSM-HR, and
GSM-EFR. Shifting in the arithmetic pipeline occurs at
several stages to accommodate various standards for
mixed- and double-precision multiplications.
相關PDF資料
PDF描述
DSP16410 16-bit fixed point DSP with Flash
DSP25-16AR Phase-leg Rectifier Diode
DSP25 Phase-leg Rectifier Diode
DSP25-12A Phase-leg Rectifier Diode
DSP25-12AT Phase-leg Rectifier Diode
相關代理商/技術參數
參數描述
DSP16410CG 制造商:AGERE 制造商全稱:AGERE 功能描述:DSP16410CG Digital Signal Processor
DSP16411 制造商:AGERE 制造商全稱:AGERE 功能描述:DSP16411 Digital Signal Processor
DSP1643 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Telecommunication IC
DSP1648C 制造商:AGERE 制造商全稱:AGERE 功能描述:Host-Based Controller V.92 Modem Chip Set
DSP1675TV2RDD12VDB 制造商:Agere Systems 功能描述: