參數(shù)資料
型號(hào): DSP16210
英文描述: TVS 400W 6.5V UNIDIRECT SMA
中文描述: DSP16210數(shù)字信號(hào)處理器
文件頁(yè)數(shù): 20/173頁(yè)
文件大?。?/td> 2621K
代理商: DSP16210
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)當(dāng)前第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)第158頁(yè)第159頁(yè)第160頁(yè)第161頁(yè)第162頁(yè)第163頁(yè)第164頁(yè)第165頁(yè)第166頁(yè)第167頁(yè)第168頁(yè)第169頁(yè)第170頁(yè)第171頁(yè)第172頁(yè)第173頁(yè)
Data Sheet
July 2000
DSP16210 Digital Signal Processor
20
DRAFT COPY
Lucent Technologies Inc.
Hardware Architecture
(continued)
Interrupts and Trap
The DSP16210 supports the following interrupts and
traps:
I
15 hardware interrupts with three levels of user-
assigned priority.
I
64 software interrupts (
icall IM6
instruction).
I
The TRAP input pin. (The TRAP pin is configured as
an output only under JTAG control to support HDS
multiple-processor debugging.) By default, after
reset, the TRAP pin is configured as an input and is
connected directly to the core via the PTRAP signal.
If the TRAP pin is asserted, the core vectors to a
user-supplied trap service routine at location
vbase
+ 0x4.
Five pins of the DSP16210 are devoted to signaling
interrupt service status. The IACK pin goes high when
the core begins to service an interrupt or trap, and goes
low three internal clock (CLK) cycles later. Four pins,
VEC[3:0], carry a code indicating which of the inter-
rupts or trap is being serviced.
Table 4 on page 21
con-
tains the encodings used by each interrupt.
If an interrupt or trap condition arises, a sequence of
actions service the interrupt or trap before the
DSP16210 resumes regular program execution. The
interrupt and trap vectors are in contiguous locations in
memory, and the base (starting) address of the
352-word vector table is configurable in the
vbase
reg-
ister.
Table 4 on page 21
describes the vector table.
Assigning each interrupt and trap source to a unique
location differentiates selection of their service rou-
tines. When an interrupt or trap is taken, the core saves
the contents of
PC
and vectors execution to the appro-
priate interrupt service routine (ISR) or trap service rou-
tine (TSR).
There are 15 hardware interrupts with three levels of
user-assigned priority. Interrupts are globally enabled
by executing the
ei
(enable interrupts) instruction and
globally disabled by executing the
di
(disable inter-
rupts) instruction. The user assigns priorities and indi-
vidually disables (masks) interrupts by configuring the
inc0
and
inc1
registers. The
ins
register contains sta-
tus information for each interrupt. The
psw1
register
includes control and status bits associated with the
interrupt handler. When an interrupt is taken, the
pi
register holds the interrupt return address.
Software interrupts allow the testing of interrupt rou-
tines and their operation when interrupts occur at spe-
cific code locations. Programmers and system
architects can observe behavior of complex code seg-
ments when interrupts occur (e.g., multilevel subroutine
nesting, cache loops, etc.).
A trap is similar to an interrupt but has the highest pos-
sible priority. Traps cannot be disabled by executing a
di
instruction. Traps do not nest, i.e., a TSR cannot be
trapped. The state of the
psw1
register is unaffected by
traps. When a trap is taken, the
ptrap
register holds the
trap return address.
An interrupt or trap service routine can be either a four-
word entry in the vector table or a larger service routine
reached via a
goto
instruction in the vector table, in
either case. The service routine must end with a
tre-
turn
instruction for traps or an
ireturn
instruction for
interrupts. Executing
ireturn
globally enables inter-
rupts (executing
treturn
does not).
Interrupt Registers
The software interrupt and the traps are always
enabled and do not have a corresponding bit in the
ins
register. Other vectored interrupts are enabled in the
inc0
and
inc1
registers (
Table 5 on page 22
) and mon-
itored in the
ins
register (
Table 6 on page 22
). One of
three priority levels for each hardware interrupt can be
configured using two consecutive bits of
inc0
or
inc1
.
There are two reasons for assigning priorities to inter-
rupts.
I
Nesting interrupts, i.e., an interrupt service routine
can be interrupted by an interrupt of higher priority.
I
Servicing concurrent interrupts according to their pri-
ority.
The
ins
register indicates the pending status of each
interrupt. When set to 1, the status bits in the
ins
register indicate that an interrupt is pending. An
instruction clears an interrupt by writing a one to the
corresponding bit in the
ins
register (e.g.,
ins = IM20
).
Writing a zero to any bit leaves the bit unchanged. The
interrupts corresponding to the least significant bits of
ins
are given higher default priority
1
than the interrupts
corresponding to the most significant bits of
ins
. The
processor must reach an interruptible state (completion
of an interruptible instruction) before action is taken on
an enabled interrupt. An interrupt is not serviced if it is
not enabled.
1. Priority is primarily determined by programming the
inc0
and
inc1
registers (
Table 5 on page 22
). For interrupts with the same
programmed priority, the position of their corresponding bits in
ins
determine their relative priority. For example, the EOFE and
EIFE interrupts (
ins
[12:11]) default to a higher priority than
EOBE and EIBF (
ins
[15:14]).
相關(guān)PDF資料
PDF描述
DSP1627 TVS 400W 6.5V BIDIRECT SMA
DSP1629 TVS 400W 64V UNIDIRECT SMA
DSP16410C TVS 400W 7.0V UNIDIRECT SMA
DSP16410 16-bit fixed point DSP with Flash
DSP25-16AR Phase-leg Rectifier Diode
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
DSP1627 制造商:AGERE 制造商全稱:AGERE 功能描述:DSP1627 Digital Signal Processor
DSP1627F32K10IR 制造商:未知廠家 制造商全稱:未知廠家 功能描述:DSP|16-BIT|CMOS|QFP|100PIN|PLASTIC
DSP1627F32K10IT 制造商:未知廠家 制造商全稱:未知廠家 功能描述:DSP|16-BIT|CMOS|QFP|100PIN|PLASTIC
DSP1627F32K11I 制造商:未知廠家 制造商全稱:未知廠家 功能描述:16-Bit Digital Signal Processor
DSP1627F32K11IR 制造商:未知廠家 制造商全稱:未知廠家 功能描述:DSP|16-BIT|CMOS|QFP|100PIN|PLASTIC