
DS3131
24 of 174
3.5 PCI Bus Signal Description
Signal Name:
PCLK
Signal Description:
PCI and System Clock
Signal Type:
Input (Schmitt triggered)
This clock input provides timing for the PCI bus and the device’s internal logic. A 33MHz clock with a nominal
50% duty cycle should be applied here.
Signal Name:
PRST
Signal Description:
PCI Reset
Signal Type:
Input
This active-low input is used to force an asynchronous reset to both the PCI bus and the device’s internal logic.
When forced low, this input forces all the internal logic of the device into its default state, forces the PCI outputs
into three-state, and forces the TD[39:0] output port-data signals high.
Signal Name:
PAD0 to PAD31
Signal Description:
PCI Address and Data Multiplexed Bus
Signal Type:
Input/Output (three-state capable)
Both address and data information are multiplexed onto these signals. Each bus transaction consists of an address
phase followed by one or more data phases. Data can be either read or written in bursts. The address is transferred
during the first clock cycle of a bus transaction. When the Little Endian format is selected, PAD[31:24] is the
MSB of the DWORD; when Big Endian is selected, PAD[7:0] contains the MSB. When the device is an initiator,
these signals are always outputs during the address phase. They remain outputs for the data phase(s) in a write
transaction and become inputs for a read transaction. When the device is a target, these signals are always inputs
during the address phase. They remain inputs for the data phase(s) in a read transaction and become outputs for a
write transaction. When the device is not involved in a bus transaction, these signals remain three-stated. These
signals are always updated and sampled on the rising edge of PCLK.
Signal Name:
PCBE0
PCBE0/PCBE1
PCBE1
PCBE1/PCBE2
PCBE2
PCBE2/PCBE3
PCBE3
Signal Description:
PCI Bus Command and Byte Enable
Signal Type:
Input/Output (three-state capable)
Bus command and byte enables are multiplexed onto the same PCI signals. During an address phase, these signals
define the bus command. During the data phase, these signals are used as bus enables. During data phases, PCBE0
refers to the PAD[7:0] and PCBE3 refers to PAD[31:24]. When this signal is high, the associated byte is invalid;
when low, the associated byte is valid. When the device is an initiator, this signal is an output and is updated on
the rising edge of PCLK. When the device is a target, this signal is an input and is sampled on the rising edge of
PCLK. When the device is not involved in a bus transaction, these signals are three-stated.
Signal Name:
PPAR
Signal Description:
PCI Bus Parity
Signal Type:
Input/Output (three-state capable)
This signal provides information on even parity across both the PAD address/data bus and the PCBE bus
command/byte enable bus. When the device is an initiator, this signal is an output for writes and an input for reads.
It is updated on the rising edge of PCLK. When the device is a target, this signal is an input for writes and an
output for reads. It is sampled on the rising edge of PCLK. When the device is not involved in a bus transaction,
PPAR is three-stated.
Signal Name:
PFRAME
Signal Description:
PCI Cycle Frame
Signal Type:
Input/Output (three-state capable)
This active-low signal is created by the bus initiator and is used to indicate the beginning and duration of a bus
transaction. PFRAME is asserted by the initiator during the first clock cycle of a bus transaction and remains
asserted until the last data phase of a bus transaction. When the device is an initiator, this signal is an output and is