
158
Bus Cycles
Chapter 7
AMD-K6-2E+ Embedded Processor Data Sheet
23542A/0—September 2000
Preliminary Information
7.3
Memory Reads and Writes
The AMD-K6-2E+ processor performs single or burst-memory
bus cycles.
I
The single-transfer memory bus cycle transfers 1, 2, 4, or 8
bytes and requires a minimum of two clocks.
Misaligned instructions or operands result in a split cycle,
which requires multiple transactions on the bus.
A burst cycle consists of four back-to-back 8-byte (64-bit)
transfers on the data bus.
I
I
Single-Transfer
Memory Read and
Write
Figure 60 on page 159 shows a single-transfer read from
memory, followed by two single-transfer writes to memory. For
the memory read cycle, the processor asserts ADS# for one
clock to validate the bus cycle and also drives A[31:3], BE[7:0]#,
D/C#, W/R#, and M/IO# to the bus. The processor then waits for
the system logic to return the data on D[63:0] (with DP[7:0] for
parity checking) and assert BRDY#. The processor samples
BRDY# on every clock edge starting with the clock edge after
the clock edge that negates ADS#
. See “BRDY# (Burst Ready)”
on page 103.
During the read cycle, the processor drives PCD, PWT, and
CACHE# to indicate its caching and cache-coherency intent for
the access. The system logic returns KEN# and WB/WT# to
either confirm or change this intent. If the processor asserts
PCD and negates CACHE#, the accesses are noncacheable, even
though the system logic asserts KEN# during the BRDY# to
indicate its support for cacheability. The processor (which
drives CACHE#) and the system logic (which drives KEN#) must
agree in order for an access to be cacheable.
The processor can drive another cycle (in this example, a write
cycle) by asserting ADS# off the next clock edge after BRDY# is
sampled asserted. Therefore, an idle clock is guaranteed
between any two bus cycles. The processor drives D[63:0] with
valid data one clock edge after the clock edge on which ADS# is
asserted. To minimize processor idle times, the system logic
stores the address and data in write buffers, returns BRDY#,
and performs the store to memory later. If the processor
samples EWBE# negated during a write cycle, it suspends
certain activities until EWBE# is sampled asserted. See
“EWBE# (External Write Buffer Empty)” on page 110. In