參數(shù)資料
型號: DSP1628
英文描述: TVS 400W 60V BIDIRECT SMA
中文描述: 澄清,串行I /設(shè)備的DSP1620/27/28/29 O控制注冊說明
文件頁數(shù): 18/114頁
文件大?。?/td> 804K
代理商: DSP1628
Preliminary Data Sheet
February 1997
DSP1628 Digital Signal Processor
16
Lucent Technologies Inc.
4 Hardware Architecture
(continued)
Interruptibility
Vectored interrupts are serviced only after the execution
of an interruptible instruction. If more than one
vectored interrupt is asserted at the same time, the in-
terrupts are serviced sequentially according to their as-
signed priorities. See Table 4 for the priorities assigned
to the vectored interrupts. Interrupt service routines,
branch and conditional branch instructions, cache
loops, and instructions that only decrement one of the
RAM pointers,
r0
to
r3
(e.g., *
r3
), are not interrupt-
ible.
A trap is similar to an interrupt, but it gains control of the
processor by branching to the trap service routine even
when the current instruction is noninterruptible. It may
not be possible to return to normal instruction execution
from the trap service routine since the machine state
cannot always be saved. In particular, program execu-
tion cannot be continued from a trapped cache loop or
interrupt service routine. While in a trap service routine,
another trap is ignored.
When set to 1, the status bits in the
ins
register indicate
that an interrupt has occurred. The processor must
reach an interruptible state (completion of an interrupt-
ible instruction) before an enabled vectored interrupt will
be acted on. An interrupt will not be serviced if it is not
enabled. Polled interrupt service can be implemented
by disabling the interrupt in the
inc
register and then
polling the
ins
register for the expected event.
Vectored Interrupts
Tables 33 and 34 show the
inc
and
ins
registers. A logic
1 written to any bit of
inc
enables (or unmasks) the as-
sociated interrupt. If the bit is cleared to a logic 0, the in-
terrupt is masked. Note that neither the software
interrupt nor traps can be masked.
The occurrence of an interrupt that is not masked will
cause the program execution to transfer to the memory
location pointed to by that interrupt's vector address,
assuming no other interrupt is being serviced (see
Table 4, Interrupt Vector Table). The occurrence of an
interrupt that is masked causes no automatic processor
action, but will set the corresponding status bit in the
ins
register. If a masked interrupt occurs, it is latched in the
ins
register, but the interrupt is not taken. When un-
latched, this latched interrupt will initiate automatic pro-
cessor interrupt action. See the DSP1611/17/18/27
Digital Signal Processor Information Manual or a more
detailed description of the interrupts.
Signaling Interrupt Service Status
Five pins of DSP1628 are devoted to signaling interrupt
service status. The IACK pin goes high while any inter-
rupt or user trap is being serviced, and goes low when
the ireturn instruction from the service routine is issued.
Four pins, VEC[3:0], carry a code indicating which of the
interrupts or trap is being serviced. Table 4 contains the
encodings used by each interrupt.
Traps due to HDS breakpoints have no effect on either
the IACK or VEC[3:0] pins. Instead, they show the inter-
rupt state or interrupt source of the DSP when the trap
occurred.
Clearing Interrupts
The PHIF interrupts (PIBF and POBE) are cleared by
reading or writing the parallel host interface data trans-
mit registers
pdx0
[in] and
pdx0
[out], respectively. The
SIO and SIO2 interrupts (IBF, IBF2, OBE, and OBE2)
are cleared one instruction cycle AFTER reading or writ-
ing the serial data registers, (
sdx
[in],
sdx2
[in],
sdx
[out],
or
sdx2
[out]). To account for this added latency, the
user must ensure that a single instruction (NOP or any
other valid DSP16XX instruction) follows the
sdx
regis-
ter read or write instruction prior to exiting an interrupt
service routine (via an ireturn or goto pi instruction) or
before checking the
ins
register for the SIO flag status.
Adding this instruction ensures that interrupts are not
reported incorrectly following an ireturn or that stale
flags are not read from the
ins
register.The JTAG inter-
rupt (JINT) is cleared by reading the
jtag
register.
Five of the vectored interrupts are cleared by writing to
the
ins
register. Writing a 1 to the INT0, INT1, EREADY,
EOVF, or TIME bits in the
ins
will cause the corre-
sponding interrupt status bit to be cleared to a logic 0.
The status bit for these vectored interrupts is also
cleared when the ireturn instruction is executed, leaving
set any other vectored interrupts that are pending.
Traps
The TRAP pin of the DSP1628 is a bidirectional signal.
At reset, it is configured as an input to the processor.
Asserting the TRAP pin will force a user trap. The trap
mechanism is used for two purposes. It can be used by
an application to rapidly gain control of the processor for
asynchronous time-critical event handling (typically for
catastrophic error recovery). It is also used by the HDS
for breakpointing and gaining control of the processor.
Separate vectors are provided for the user trap (0x46)
and the HDS trap (0x3). Traps are not maskable.
相關(guān)PDF資料
PDF描述
DSP16210 TVS 400W 6.5V UNIDIRECT SMA
DSP1627 TVS 400W 6.5V BIDIRECT SMA
DSP1629 TVS 400W 64V UNIDIRECT SMA
DSP16410C TVS 400W 7.0V UNIDIRECT SMA
DSP16410 16-bit fixed point DSP with Flash
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
DSP1629 制造商:AGERE 制造商全稱:AGERE 功能描述:DSP1629 Digital Signal Processor
DSP1629BA10K10IT 制造商:未知廠家 制造商全稱:未知廠家 功能描述:DSP|16-BIT|CMOS|BGA|144PIN|PLASTIC
DSP1629BA10K12.5IR 制造商:未知廠家 制造商全稱:未知廠家 功能描述:16-Bit Digital Signal Processor
DSP1629BA10K16.7IT 制造商:未知廠家 制造商全稱:未知廠家 功能描述:DSP|16-BIT|CMOS|BGA|144PIN|PLASTIC
DSP1629BA10K19.2IR 制造商:未知廠家 制造商全稱:未知廠家 功能描述:16-Bit Digital Signal Processor