Timer Interface Module A (TIMA)
Functional Description
MC68HC08AZ32A — Rev 1.0
Technical Data
MOTOROLA
Timer Interface Module A (TIMA)
For More Information On This Product,
Go to: www.freescale.com
393
initially control the pulse width on the PTF2/TACH4
pin. Writing to the
TIMA channel 5 registers enables the TIMA channel 5 registers to
synchronously control the pulse width at the beginning of the next PWM
period. At each subsequent overflow, the TIMA channel registers (4 or
5) that control the pulse width are the ones written to last. TASC4
controls and monitors the buffered PWM function and TIMA channel 5
status and control register (TASC5) is unused. While the MS4B bit is set,
the channel 5 pin, PTF3/TACH5, is available as a general-purpose I/O
pin.
NOTE:
In buffered PWM signal generation, do not write new pulse width values
to the currently active channel registers. User software should track the
currently active channel to prevent writing a new value to the active
channel. Writing to the active channel registers is the same as
generating unbuffered PWM signals.
22.4.4.3 PWM Initialization
To ensure correct operation when generating unbuffered or buffered
PWM signals, use the following initialization procedure:
1. In the TIMA status and control register (TASC):
a. Stop the TIMA counter and prescaler by setting the TIMA stop
bit, TSTOP.
b. Reset the TIMA counter and prescaler by setting the TIMA
reset bit, TRST.
2. In the TIMA counter modulo registers (TAMODH–TAMODL) write
the value for the required PWM period.
3. In the TIMA channel x registers (TACHxH–TACHxL) write the
value for the required pulse width.
4. In TIMA channel x status and control register (TASCx):
a. Write 0:1 (for unbuffered output compare or PWM signals) or
1:0 (for buffered output compare or PWM signals) to the
mode select bits, MSxB–MSxA (see
Table 22-2
).
b. Write 1 to the toggle-on-overflow bit, TOVx.
F
Freescale Semiconductor, Inc.
n
.