ADVANCE INFORMATION
VCT 38xxA
Micronas
27
2.11.3.Average Beam Current Limiter
The average beam current limiter (BCL) uses the
SENSE input for the beam current measurement. The
BCL uses a different filter to average the beam current
during the active picture. The filter bandwidth is
approx. 2 kHz. The beam current limiter has an auto-
matic offset adjustment that is active two lines before
the first cutoff measurement line.
The beam current limiter function is located in the
front-end. The data exchange between the front-end
and the back-end is done via a single-wire serial inter-
face.
The beam current limiter allows the setting of a thresh-
old current. If the beam current is above the threshold,
the excess current is low-pass filtered and used to
attenuate the RGB outputs by adjusting the white-drive
multipliers for the internal (digital) RGB signals, and
the analog contrast multipliers for the analog RGB
inputs, respectively. The lower limit of the attenuator is
programmable, thus a minimum contrast can always
be set. During the tube measurement, the ABL attenu-
ation is switched off. After the white-drive measure-
ment line it takes 3 lines to switch back to BCL limited
drives and brightness.
Typical characteristics of the ABL for different loop
gains are shown in Fig. 2–22; for this example the tube
has been assumed to have square law characteristics.
Fig. 2–22:
Beam current limiter characteristics:
beam current output vs. drive
BCL threshold: 1
2.11.4.Analog RGB Insertion
The VCT 38xxA allows insertion of external analog
RGB signals. The RGB signal is key-clamped and
inserted into the main RGB by the Fast-Blank switch.
The external RGB input can be overlaid or underlaid to
the digital picture. The external RGB signals can be
adjusted independently as regards DC level (bright-
ness) and magnitude (contrast).
All signals for analog RGB insertion (RIN, GIN, BIN,
FBLIN) must be synchronized to the horizontal flyback,
otherwise a horizontal jitter will be visible. The
VCT 38xxA has no means for timing correction of the
analog RGB input signals.
2.11.5.Fast-Blank Monitor
The presence of external analog RGB sources can be
detected by means of a Fast-Blank monitor. The status
of the Fast-Blank input can be monitored via an I
2
C
bus register. There is a 2 bit information, giving static
and dynamic indication of a Fast-Blank signal. The
static bit is directly reading the Fast-Blank input line,
whereas the dynamic bit is reading the status of a
flip-flop triggered by the negative edge of the Fast-
Blank signal.
With this monitor logic it is possible to detect if there is
an external RGB source active and if it is a full screen
insertion or only a box. The monitor logic is connected
directly to the FBLIN pin.