參數(shù)資料
型號(hào): DSP1629
英文描述: TVS 400W 64V UNIDIRECT SMA
中文描述: DSP1629數(shù)字信號(hào)處理器
文件頁(yè)數(shù): 20/126頁(yè)
文件大?。?/td> 1993K
代理商: DSP1629
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)當(dāng)前第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)
Data Sheet
March 2000
DSP1629 Digital Signal Processor
20
Lucent Technologies Inc.
4 Hardware Architecture
(continued)
4.5 External Memory Interface (EMI)
The external memory interface supports read/write op-
erations from instruction/coefficient memory, data
memory, and memory-mapped I/O devices. The
DSP1629 provides a 16-bit external address bus,
AB[15:0], and a 16-bit external data bus, DB[15:0].
These buses are multiplexed between the internal bus-
es for the instruction/coefficient memory and the data
memory. Four external memory segment enables,
ERAMLO, IO, ERAMHI, and EROM, select the external
memory segment to be addressed.
If a data memory location with an address between
0x4100 and 0x7FFF is addressed, ERAMLO is asserted
low.
If one of the 256 external data memory locations, with
an address greater than or equal to 0x4000, and less
than or equal to 0x40FF, is addressed, IO is asserted
low. IO is intended for memory-mapped I/O.
If a data memory location with an address greater than
or equal to 0x8000 is addressed, ERAMHI is asserted
low. When the external instruction/coefficient memory is
addressed, EROM is asserted low.
The flexibility provided by the programmable options of
the external memory interface (see Table 36, mwait
Register and Table 38, ioc Register) allows the
DSP1629 to interface gluelessly with a variety of com-
mercial memory chips.
Each of the four external memory segments, ERAMLO,
IO, ERAMHI, and EROM, has a number of wait-states
that is programmable (from 0 to 15) by writing to the
mwait register. When the program references memory
in one of the four external segments, the internal multi-
plexer is automatically switched to the appropriate set of
internal buses, and the associated external enable of
ERAMLO, IO, ERAMHI, or EROM is issued. The exter-
nal memory cycle is automatically stretched by the num-
ber of wait-states in the appropriate field of the mwait
register.
When writing to external memory, the RWN pin goes
low for the external cycle. The external data bus,
DB[15:0], is driven by the DSP1629 starting halfway
through the cycle. The data driven on the external data
bus is automatically held after the cycle for one addi-
tional clock period unless an external read cycle imme-
diately follows.
The DSP1629 has one external address bus and one
external data bus for both memory spaces. Since some
instructions provide the capability of simultaneous ac-
cess to both X space and Y space, some provision must
be made to avoid collisions for external accesses. The
DSP1629 has a sequencer that does the external X ac-
cess first, and then the external Y access, transparently
to the programmer. Wait-states are maintained as pro-
grammed in the mwait register. For example, let two in-
structions be executed: the first reads a coefficient from
EROM and writes data to ERAM; the second reads a
coefficient from EROM and reads data from ERAM. The
sequencer carries out the following steps at the external
memory interface: read EROM, write ERAM, read ER-
OM, and read ERAM. Each step is done in sequential
one-instruction cycle steps, assuming zero wait-states
are programmed. Note that the number of instruction
cycles taken by the two instructions is four. Also, in this
case, the write hold time is zero.
The DSP1629 allows writing into external instruction/
coefficient memory. By setting bit 11, WEROM, of the
ioc register (see Table 38), writing to (or reading from)
data memory or memory-mapped I/O asserts the
EROM strobe instead of ERAMLO, IO, or ERAMHI.
Therefore, with WEROM set, EROM appears in both Y
space (replacing ERAM) and X space, in its normal po-
sition.
Bit 14 of the ioc register (see Table 38), EXTROM, may
be used with WEROM to download to a full 64K of ex-
ternal memory. When WEROM and EXTROM are both
asserted, address bit 15 (AB15) is held low, aliasing the
upper 32K of external memory into the lower 32K.
When an access to internal memory is made, the
AB[15:0] bus holds the last valid external memory ad-
dress. Asserting the RSTB pin low 3-states the AB[15:0]
bus. After reset, the AB[15:0] value is undefined.
The leading edge of the memory segment enables can
be delayed by approximately one-half a CKO period by
programming the ioc register (see Table 38). This is
used to avoid a situation in which two devices drive the
data bus simultaneously.
Bits 7, 8, and 13 of the ioc register select the mode of
operation for the CKO pin (see Table 38). Available op-
tions are a free-running unstretched clock, a wait-stated
sequenced clock (runs through two complete cycles
during a sequenced external memory access), and a
wait-stated clock based on the internal instruction cycle.
These clocks drop to the low-speed internal ring oscilla-
tor when SLOWCKI is enabled (see 4.13, Power Man-
agement). The high-to-low transitions of the wait-stated
clock are synchronized to the high-to-low transition of
the free-running clock. Also, the CKO pin provides ei-
ther a continuously high level, a continuously low level,
or changes at the rate of the internal processor clock.
This last option, only available with the small-signal in-
put clock options, enables the DSP1629 CKI input buff-
er to deliver a full-rate clock to other devices while the
DSP1629 itself is in one of the low-power modes.
相關(guān)PDF資料
PDF描述
DSP16410C TVS 400W 7.0V UNIDIRECT SMA
DSP16410 16-bit fixed point DSP with Flash
DSP25-16AR Phase-leg Rectifier Diode
DSP25 Phase-leg Rectifier Diode
DSP25-12A Phase-leg Rectifier Diode
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
DSP1629BA10K10IT 制造商:未知廠家 制造商全稱:未知廠家 功能描述:DSP|16-BIT|CMOS|BGA|144PIN|PLASTIC
DSP1629BA10K12.5IR 制造商:未知廠家 制造商全稱:未知廠家 功能描述:16-Bit Digital Signal Processor
DSP1629BA10K16.7IT 制造商:未知廠家 制造商全稱:未知廠家 功能描述:DSP|16-BIT|CMOS|BGA|144PIN|PLASTIC
DSP1629BA10K19.2IR 制造商:未知廠家 制造商全稱:未知廠家 功能描述:16-Bit Digital Signal Processor
DSP1629BA16K10IT 制造商:未知廠家 制造商全稱:未知廠家 功能描述:DSP|16-BIT|CMOS|BGA|144PIN|PLASTIC