AD9522-1
Rev. 0 | Page 35 of 84
The differential reference input receiver is powered down when
it is not selected or when the PLL is powered down. The single-
ended buffers power down when the PLL is powered down or
when their respective individual power-down registers are set.
When the differential mode is selected, the single-ended inputs
are powered down.
In differential mode, the reference input pins are internally self-
biased so that they can be ac-coupled via capacitors. It is possible to
dc couple to these inputs. If the differential REFIN is driven by
a single-ended signal, the unused side (REFIN) should be
decoupled via a suitable capacitor to a quiet ground.
shows the equivalent circuit of REFIN.
VS
REF1
REF2
REFIN
150
10k
12k
10k
REFIN
85k
VS
85k
VS
07
22
0-
0
66
Figure 43. REFIN Equivalent Circuit for Non-XTAL Mode
Crystal mode is nearly identical to differential mode. The user
enables a maintaining amplifier by setting the enable XTAL
OSC bit, and putting a series resonant, AT fundamental cut
crystal across the REFIN/REFIN pins.
Reference Switchover
The AD9522 supports dual single-ended CMOS inputs, as well
as a single differential reference input. In the dual single-ended
reference mode, the AD9522 supports automatic and manual
PLL reference clock switching between REF1 (on Pin REFIN)
and REF2 (on Pin REFIN). This feature supports networking
and other applications that require hitless switching of
redundant references. When used in conjunction with the
automatic holdover function, the AD9522 can achieve a worst-
case reference input switchover with an output frequency
disturbance as low as 10 ppm.
There are several configurable modes of reference switchover.
The switchover can be performed manually or automatically.
Manual switchover is performed either through Register 0x01C
or by using the REF_SEL pin. The automatic switchover occurs
when REF1 disappears. A switchover deglitch feature ensures
which the PLL does not receive rising edges that are far out of
alignment with the newly selected reference.
There are two automatic reference switchover modes (0x01C):
Prefer REF1. Switch from REF1 to REF2 when REF1
disappears. Return to REF1 from REF2 when REF1 returns.
Stay on REF2. Automatically switch to REF2 if REF1
disappears but do not switch back to REF1 if it reappears.
The reference can be set back to REF1 manually at an
appropriate time.
In automatic mode, REF1 is monitored by REF2. If REF1
disappears (two consecutive falling edges of REF2 without an
edge transition on REF1), REF1 is considered missing. On the
next subsequent rising edge of REF2, REF2 is used as the reference
clock to the PLL. If 0x01C[3] = 0b (default), when REF1 returns
(four rising edges of REF1 without two falling edges of REF2
between the REF1 edges), the PLL reference switches back to
REF1. If 0x01C[3] = 1b, the user can control when to switch
back to REF1. This is done by programming the part to manual
reference select mode (0x01C[4] = 0b) and by ensuring that the
registers and/or the REF_SEL pin are set to select the desired
reference. Automatic mode can be reenabled when REF1 is
reselected.
Manual switchover requires the presence of a clock on the reference
input being switched to or that the deglitching feature be
disabled (0x01C[7]).
Reference Divider R
The reference inputs are routed to the reference divider, R. R (a
14-bit counter) can be set to any value from 0 to 16,383 by writing
to 0x011 and 0x012. (Both R = 0 and R = 1 give divide-by-1.) The
output of the R divider goes to one of the PFD inputs to be
compared with the VCO frequency divided by the N divider.
The frequency applied to the PFD must not exceed the maximum
allowable frequency, which depends on the antibacklash pulse
The R divider has its own reset. The R divider can be reset using
the shared reset bit of the R, A, and B counters. It can also be
reset by a SYNC operation.
VCO/VCXO Feedback Divider N: P, A, B, R
The N divider is a combination of a prescaler (P) and two counters,
A and B. The total divider value is
N = (P × B) + A
where P can be 2, 4, 8, 16, or 32.