參數(shù)資料
型號: AM79C970AKCW
廠商: ADVANCED MICRO DEVICES INC
元件分類: 微控制器/微處理器
英文描述: PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller for PCI Local Bus Product
中文描述: 2 CHANNEL(S), 10M bps, LOCAL AREA NETWORK CONTROLLER, PQFP132
封裝: PLASTIC, QFP-132
文件頁數(shù): 212/219頁
文件大?。?/td> 1065K
代理商: AM79C970AKCW
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁當前第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁
AMD
D-8
Am79C970A
An average increase in performance can be achieved if
the general guidelines of buffer sizes in figure 2 is fol-
lowed. However, as was noted earlier, the correct sizing
for buffers will depend upon the expected message size.
There are two problems with relating expected message
size with the correct buffer sizing:
1. Message sizes cannot always be accurately pre-
dicted, since a single application may expect differ-
ent message sizes at different times, therefore, the
buffer sizes chosen will not always maximize
throughput.
2. Within a single application, message sizes might
be somewhat predictable, but when the same
driver is to be shared with multiple applications,
there may not be a common predictable message
size.
Additional problems occur when trying to define the cor-
rect sizing because the correct size also depends upon
the interrupt latency, which may vary from system to
system, depending upon both the hardware and the
software installed in each system.
In order to deal with the unpredictable nature of the mes-
sage size, the driver can implement a self tuning mecha-
nism that examines the amount of time spent in tasks S5
and S7 as such: while the driver is polling for each de-
scriptor, it could count the number of poll operations per-
formed and then adjust the number 1 buffer size to a
larger value, by adding “t” bytes to the buffer count, if the
number of poll operations was greater than “x”. If fewer
than “x” poll operations were needed for each of S5 and
S7, then the software should adjust the buffer size to a
smaller value by, subtracting “y” bytes from the buffer
count. Experiments with such a tuning mechanism must
be performed to determine the best values for “X”
and “y”.
Note whenever the size of buffer number 1 is adjusted,
buffer sizes for buffer number 2 and buffer 3 should also
be adjusted.
In some systems, the typical mix of receive frames on a
network for a client application consists mostly of large
data frames, with very few small frames. In this case, for
maximum efficiency of buffer sizing, when a frame ar-
rives under a certain size limit, the driver should not ad-
just the buffer sizes in response to the short frame.
An Alternative LAPP Flow—the TWO Interrupt
Method
An alternative to the above suggested flow is to use two
interrupts, one at the start of the receive frame and the
other at the end of the receive frame, instead of just look-
ing for the SRP interrupt as was described above. This
alternative attempts to reduce the amount of time that
the software wastes while polling for descriptor own bits.
This time would then be available for other CPU tasks. It
also minimizes the amount of time the CPU needs for
data copying. This savings can be applied to other
CPU tasks.
The time from the end of frame arrival on the wire to de-
livery of the frame to the application is labeled as frame
latency. For the one-interrupt method, frame latency is
minimized, while CPU utilization increases. For the two-
interrupt method, frame latency becomes greater, while
CPU utilization decreases.
Note that some of the CPU time that can be applied to
non-Ethernet tasks is used for task switching in the
CPU. One task switch is required to swap a non-Ether-
net task into the CPU (after S7A) and a second task
switch is needed to swap the Ethernet driver back in
again (at S8A). If the time needed to perform these task
switches exceeds the time saved by not polling descrip-
tors, then there is a net loss in performance with this
method. Therefore, the LAPP method implemented
should be carefully chosen.
相關PDF資料
PDF描述
AM79C970AKC PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller for PCI Local Bus Product
AM79C970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller for PCI Local Bus Product
AM79C970AVCW PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller for PCI Local Bus Product
AM79C970 PCnetTM-PCI Single-Chip Ethernet Controller for PCI Local Bus
AM79C971VCW PCnet⑩-FAST Single-Chip Full-Duplex 10/100 Mbps Ethernet Controller for PCI Local Bus
相關代理商/技術參數(shù)
參數(shù)描述
AM79C970AVC 制造商:Advanced Micro Devices 功能描述:
AM79C970AVC\\W 制造商:Advanced Micro Devices 功能描述: 制造商:Rochester Electronics LLC 功能描述:
AM79C970AVC\W 制造商:Advanced Micro Devices 功能描述: 制造商:Rochester Electronics LLC 功能描述: 制造商:AMD 功能描述:
AM79C970AVC-G 制造商:Rochester Electronics LLC 功能描述:
AM79C970AVCW 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller for PCI Local Bus Product