參數(shù)資料
型號(hào): AM79C960KC
廠商: ADVANCED MICRO DEVICES INC
元件分類: 微控制器/微處理器
英文描述: PCnetTM-ISA Single-Chip Ethernet Controller
中文描述: 2 CHANNEL(S), 10M bps, LOCAL AREA NETWORK CONTROLLER, PQFP120
封裝: CARRIER RING, PLASTIC, QFP-120
文件頁(yè)數(shù): 37/127頁(yè)
文件大?。?/td> 814K
代理商: AM79C960KC
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)當(dāng)前第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)
P R E L I M I N A R Y
AMD
1-379
Am79C960
scriptor. In any case, lookahead will be performed to the
third buffer and the information gathered will be stored in
the chip, regardless of the state of the ownership bit. As
in the transmit flow, lookahead operations are per-
formed only once.
This activity continues until the PCnet-ISA controller
recognizes the completion of the packet (the last byte of
this receive message has been removed from the
FIFO). The PCnet-ISA controller will subsequently
update the current RDTE status with the end of packet
(ENP) indication set, write the message byte count
(MCNT) of the complete packet into RMD2 and over-
write the “current” entries in the CSRs with the
“next” entries.
Media Access Control
The Media Access Control engine incorporates the es-
sential protocol requirements for operation of a
compliant Ethernet/802.3 node, and provides the inter-
face between the FIFO sub-system and the Manchester
Encoder/Decoder (MENDEC).
The MAC engine is fully compliant to Section 4 of ISO/
IEC 8802-3 (ANSI/IEEE Standard 1990 Second Edition)
and ANSI/IEEE 802.3 (1985).
The MAC engine provides programmable enhanced
features designed to minimize host supervision and pre
or post-message processing. These features include
the ability to disable retries after a collision, dynamic
FCS generation on a packet-by-packet basis, and auto-
matic pad field insertion and deletion to enforce
minimum frame size attributes.
The two primary attributes of the MAC engine are:
I
Transmit and receive message data encapsulation
— Framing (frame boundary delimitation, frame
synchronization)
— Addressing (source and destination address
handling)
— Error detection (physical medium transmission
errors)
I
Media access management
— Medium allocation (collision avoidance)
— Contention resolution (collision handling)
Transmit And Receive Message Data
Encapsulation
The MAC engine provides minimum frame size enforce-
ment for transmit and receive packets. When
APAD_XMT = 1 (bit 11 in CSR4), transmit messages
will be padded with sufficient bytes (containing 00h) to
ensure that the receiving station will observe an infor-
mation field (destination address, source address,
length/type, data and FCS) of 64 bytes. When
ASTRP_RCV = 1 (bit 10 in CSR4), the receiver will auto-
matically strip pad bytes from the received message by
observing the value in the length field, and stripping ex-
cess bytes if this value is below the minimum data size
(46 bytes). Both features can be independently over-
ridden to allow illegally short (less than 64 bytes of
packet data) messages to be transmitted and/
or received.
Framing (Frame Boundary Delimitation, Frame
Synchronization)
The MAC engine will autonomously handle the con-
struction of the transmit frame. Once the Transmit FIFO
has been filled to the predetermined threshold (set by
XMTSP in CSR80), and providing access to the channel
is currently permitted, the MAC engine will commence
the 7-byte preamble sequence (10101010b, where first
bit transmitted is a 1). The MAC engine will subse-
quently append the Start Frame Delimiter (SFD) byte
(10101011b) followed by the serialized data from the
Transmit FIFO. Once the data has been completed, the
MAC engine will append the FCS (most significant bit
first) which was computed on the entire data portion of
the message.
Note that the user is responsible for the correct ordering
and content in each of the fields in the frame, including
the destination address, source address, length/type
and packet data.
The receive section of the MAC engine will detect an in-
coming preamble sequence and lock to the encoded
clock. The internal MENDEC will decode the serial bit
stream and present this to the MAC engine. The MAC
will discard the first 8 bits of information before search-
ing for the SFD sequence. Once the SFD is detected, all
subsequent bits are treated as part of the frame. The
MAC engine will inspect the length field to ensure mini-
mum frame size, strip unnecessary pad characters (if
enabled), and pass the remaining bytes through the Re-
ceive FIFO to the host. If pad stripping is performed, the
MAC engine will also strip the received FCS bytes, al-
though the normal FCS computation and checking will
occur. Note that apart from pad stripping, the frame will
be passed unmodified to the host. If the length field has
a value of 46 or greater, the MAC engine will not attempt
to validate the length against the number of bytes con-
tained in the message.
If the frame terminates or suffers a collision before
64 bytes of information (after SFD) have been received,
the MAC engine will automatically delete the frame from
the Receive FIFO, without host intervention.
Addressing (Source and Destination Address
Handling)
The first 6 bytes of information after SFD will be inter-
preted as the destination address field. The MAC engine
provides facilities for physical, logical, and broadcast
address reception. In addition, multiple physical ad-
dresses can be constructed (perfect address filtering)
using external logic in conjunction with the EADI
interface.
Error Detection (Physical Medium Transmission
Errors)
The MAC engine provides several facilities which report
and recover from errors on the medium. In addition, the
相關(guān)PDF資料
PDF描述
AM79C960KCW PCnetTM-ISA Single-Chip Ethernet Controller
AM79C961AKCW PCnet ⑩-ISA II Jumperless, Full Duplex Single-Chip Ethernet Controller for ISA
AM79C961AKC PCnet ⑩-ISA II Jumperless, Full Duplex Single-Chip Ethernet Controller for ISA
AM79C961A PCnet ⑩-ISA II Jumperless, Full Duplex Single-Chip Ethernet Controller for ISA
AM79C961AKIW PCnet⑩-ISA II Jumperless, Full Duplex Single-Chip Ethernet Controller for ISA
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AM79C960KC/W 制造商:未知廠家 制造商全稱:未知廠家 功能描述:LAN Node Controller
AM79C960KCW 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:PCnetTM-ISA Single-Chip Ethernet Controller
AM79C961 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Am79C961 - PCnet-ISA+ Jumperless Single-Chip Ethernet Controller for ISA
AM79C961/AM79C961A 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Using the Am79C961/Am79C961A (PCnet-ISA+/PCnet-ISA II) Survival Guide? 134KB (PDF)