參數(shù)資料
型號: HSP50214B
廠商: Intersil Corporation
英文描述: Programmable Downconverter
中文描述: 可編程變頻器
文件頁數(shù): 39/60頁
文件大小: 573K
代理商: HSP50214B
3-39
Figure 38 shows the interface between a 16-bit
microprocessor (or other baseband processing engine) and
the Buffer RAM Output Section of the Programmable Down
Converter, configured for data output via the parallel outputs
AOUT and BOUT. In the 16-bit microprocessor interface
configuration, the Buffer RAM pointer is incremented when
the
μ
Processor reads address SEL(2:0) = 7 and OEBL = 0.
After reset, the FIFO must be incremented to read the first
sample set. This is because the RAM read and write pointers
cannot point to the same address. Thus, the FIFO pointer
must move to the next address before reading the next set of
data (I, Q, |r|,
φ
, and
f
) samples. 4 PROCCLK cycles are
required after an increment before reading can resume. The
FIFO write pointer is reset to zero (the first data sample) when
Control Word 22 is written to via the 8-bit microprocessor
interface. See the Microprocessor Read Section for more
detail on how to obtain the Buffer RAM output with this
technique. Figure 39 shows the timing diagram required for
parallel output operations. In this diagram, only the I, Q and
Frequency data are taken from each sample before
incrementing to the next sample. Figure 39 assumes that the
pointer has already been incremented into a sample.
NOTE: For the very first sample read, the pointer must be incre-
mented first and 4 PROCCLKs must pass before this
sample can be read.
Figure 39 shows INTRRP going low before the FIFO is read.
The FIFO can be read before the number of samples
reaches the INTRRP pointer. The number of samples in the
FIFO must be monitored by the user via a status read.
Suppose the depth of the Buffer RAM Output Section is
programmed for an INTRRP pointer depth of 4. If the output
is at 4 times the baud rate, the processing routine for the
microprocessor may only need to read the buffer when the
Buffer RAM had 4 samples since processing is usually on a
baud by baud basis.
Figure 40 illustrates the conceptual view of the FIFO as a
circular buffer, with the Write address one step ahead of the
Read Address.
Figure 40A deals with clockwise read and write address
incrementing. The FIFO depth is the difference between the
Write and Read pointers, modulo 8. Figure 40B illustrates a
FIFO status of Full, while Figure 40C illustrates a FIFO
empty status condition. Figure 40D illustrates a programmed
FIFO depth of 3 and the INTRRP signal indicating that the
buffer has sufficient data to be read.
Following some simple rules for operating the FIFO will
eliminate most operational errors:
Rule #1: The Read and Write Pointers cannot point at the
same address (the circuitry will not allow this).
Rule #2: The FIFO is full when the Write Address = Read
Address -1 (no more data will be written until some samples
are read or the FIFO is reset).
Rule #3: The FIFO is empty when the Read Address =
(Write Address -1) (the circuitry will not allow the read
pointer to be incremented).
Rule #4: You cannot write over what you have not read.
Rule #5: RESET places the Write address pointer = 000
and Read address pointer = 111.
Rule #6: The best addressing scheme is to read the FIFO
until it is empty. This avoids erroneous INTRRP assertions
and provides for simple FIFO depth monitoring. The interrupt
is generated when the depth increments past the threshold.
H
INTRRP
OEAL
OEBL
PDC
16-BIT
μ
P
SEL(2:0)
BOUT(7:0)
AOUT(7:0)
FIGURE 38. INTERFACE BETWEEN A 16-BIT MICROPROCES-
SOR AND PDC IN FIFO BUFFER RAM MODE
INT
RD
D(15:8)
D(7:0)
A(2:0)
1
2 3 4
1 2 3 4
5 6 7 8
0
1
4
7
0
1
INTRRP
OEAL,
OEBL
SEL(0:2)
I
Q
FR
I
Q
AOUT(7:0),
BOUT(7:0)
PROCCLK
8 CLKS
> 4 CLKS
FIGURE 39. TIMING DIAGRAM FOR PDC IN FIFO MODE WITH
OUTPUTS I, Q, AND FREQUENCY SENT TO
AOUT(7:0) AND BOUT(7:0)
HSP50214B
相關(guān)PDF資料
PDF描述
HSP50214BVC Programmable Downconverter
HSP50214BVI Programmable Downconverter
HT84 ADSL Coupling Transformers
HT84-00594 ADSL Coupling Transformers
HT8400594S ADSL Coupling Transformers
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
HSP50214B_07 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:Programmable Downconverter
HSP50214BVC 功能描述:上下轉(zhuǎn)換器 120L MQFP COMTEMP 14-BIT PROGRAMMABLE DOWNCONVERTER 65MSPS RoHS:否 制造商:Texas Instruments 產(chǎn)品:Down Converters 射頻:52 MHz to 78 MHz 中頻:300 MHz LO頻率: 功率增益: P1dB: 工作電源電壓:1.8 V, 3.3 V 工作電源電流:120 mA 最大功率耗散:1 W 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:PQFP-128
HSP50214BVCZ 功能描述:上下轉(zhuǎn)換器 120L MQFP COMTEMP 14-BIT PROG DWNCNVRT RoHS:否 制造商:Texas Instruments 產(chǎn)品:Down Converters 射頻:52 MHz to 78 MHz 中頻:300 MHz LO頻率: 功率增益: P1dB: 工作電源電壓:1.8 V, 3.3 V 工作電源電流:120 mA 最大功率耗散:1 W 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:PQFP-128
HSP50214BVI 功能描述:上下轉(zhuǎn)換器 120L MQFP INDTEMP 14-BIT PROGRAMMABLE DOWNCONVERTER 65MSPS RoHS:否 制造商:Texas Instruments 產(chǎn)品:Down Converters 射頻:52 MHz to 78 MHz 中頻:300 MHz LO頻率: 功率增益: P1dB: 工作電源電壓:1.8 V, 3.3 V 工作電源電流:120 mA 最大功率耗散:1 W 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:PQFP-128
HSP50214BVIZ 功能描述:上下轉(zhuǎn)換器 120L MQFP INDTEMP 14-BIT PROG DWNCNVRT RoHS:否 制造商:Texas Instruments 產(chǎn)品:Down Converters 射頻:52 MHz to 78 MHz 中頻:300 MHz LO頻率: 功率增益: P1dB: 工作電源電壓:1.8 V, 3.3 V 工作電源電流:120 mA 最大功率耗散:1 W 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:PQFP-128