2006 Microchip Technology Inc.
Preliminary
DS70178C-page 91
dsPIC30F1010/202X
9.0
TIMER2/3 MODULE
This section describes the 32-bit General Purpose
Timer module (Timer2/3) and associated operational
modes.
Figure 9-1 depicts the simplified block diagram
3 show Timer2/3 configured as two independent 16-bit
timers: Timer2 and Timer3, respectively.
The Timer2/3 module is a 32-bit timer, which can be
configured as two 16-bit timers, with selectable operat-
ing modes. These timers are utilized by other
peripheral modules such as:
Input Capture
Output Compare/Simple PWM
The following sections provide a detailed description,
including setup and control registers, along with asso-
ciated block diagrams for the operational modes of the
timers.
The 32-bit timer has the following modes:
Two independent 16-bit timers (Timer2 and
Timer3) with all 16-bit operating modes (except
Asynchronous Counter mode)
Single 32-bit Timer operation
Single 32-bit Synchronous Counter
Further, the following operational characteristics are
supported:
ADC Event Trigger
Timer Gate Operation
Selectable Prescaler Settings
Timer Operation during Idle and Sleep modes
Interrupt on a 32-bit Period Register Match
These operating modes are determined by setting the
appropriate bit(s) in the 16-bit T2CON and T3CON
SFRs.
For 32-bit timer/counter operation, Timer2 is the least
significant word and Timer3 is the most significant word
of the 32-bit timer.
16-bit Mode: In the 16-bit mode, Timer2 and Timer3
can be configured as two independent 16-bit timers.
Each timer can be set up in either 16-bit Timer mode or
modes.
The only functional difference between Timer2 and
Timer3 is that Timer2 provides synchronization of the
clock prescaler output. This is useful for high-frequency
external clock inputs.
32-bit Timer Mode: In the 32-bit Timer mode, the timer
increments on every instruction cycle up to a match
value, preloaded into the combined 32-bit period regis-
ter PR3/PR2, then resets to ‘0’ and continues to count.
For synchronous 32-bit reads of the Timer2/Timer3
pair, reading the least significant word (TMR2 register)
will cause the most significant word to be read and
latched
into
a
16-bit
holding
register,
termed
TMR3HLD.
For synchronous 32-bit writes, the holding register
(TMR3HLD) must first be written to. When followed by
a write to the TMR2 register, the contents of TMR3HLD
will be transferred and latched into the MSB of the
32-bit timer (TMR3).
32-bit Synchronous Counter Mode: In the 32-bit
Synchronous Counter mode, the timer increments on
the rising edge of the applied external clock signal,
which is synchronized with the internal phase clocks.
The timer counts up to a match value preloaded in the
combined 32-bit period register, PR3/PR2, then resets
to ‘0’ and continues.
When the timer is configured for the Synchronous
Counter mode of operation and the CPU goes into the
Idle mode, the timer will stop incrementing, unless the
TSIDL (T2CON<13>) bit = 0. If TSIDL = 1, the timer
module logic will resume the incrementing sequence
upon termination of the CPU Idle mode.
Note: This data sheet summarizes features of this group
of dsPIC30F devices and is not intended to be a complete
reference source. For more information on the CPU,
peripherals, register descriptions and general device
functionality, refer to the “dsPIC30F Family Reference
Manual” (DS70046).
Note:
The dsPIC30F1010 device does not fea-
ture Timer3. Timer2 is a ‘Type B’ timer and
Timer3 is a ‘Type C’ timer. Please refer to
document.
Note:
For 32-bit timer operation, T3CON control
bits are ignored. Only T2CON control bits
are used for setup and control. Timer 2
clock and gate inputs are utilized for the
32-bit timer module, but an interrupt is
generated with the Timer3 interrupt flag
(T3IF) and the interrupt is enabled with the
Timer3 interrupt enable bit (T3IE).