(W or s t - C as e M i l i t a r y Cond i t i o n s , V CC
鍙冩暩(sh霉)璩囨枡
鍨嬭櫉锛� A1020B-1VQ80C
寤犲晢锛� Microsemi SoC
鏂囦欢闋佹暩(sh霉)锛� 39/98闋�
鏂囦欢澶�?銆�?/td> 0K
鎻忚堪锛� IC FPGA 2K GATES 80-VQFP COM
妯欐簴鍖呰锛� 90
绯诲垪锛� ACT™ 1
LAB/CLB鏁�(sh霉)锛� 547
杓稿叆/杓稿嚭鏁�(sh霉)锛� 69
闁€鏁�(sh霉)锛� 2000
闆绘簮闆诲锛� 4.5 V ~ 5.5 V
瀹夎椤炲瀷锛� 琛ㄩ潰璨艰
宸ヤ綔婧害锛� 0°C ~ 70°C
灏佽/澶栨锛� 80-TQFP
渚涙噳鍟嗚ō鍌欏皝瑁濓細 80-VQFP锛�14x14锛�
44
A1 41 00 A Ti m i ng Cha r act e r i s t i cs
(W or s t - C as e M i l i t a r y Cond i t i o n s , V CC = 4.5 V, TJ = 1 25掳C)
鈥樷€�1鈥� Speed
鈥楽td鈥� Speed
Parameter
Description
Min.
Max.
Min.
Max.
Units
Logic Module Propagation Delays1
tPD
Internal Array Module
3.0
3.5
ns
tCO
Sequential Clock to Q
3.0
3.5
ns
tCLR
Asynchronous Clear to Q
3.0
3.5
ns
Logic Module Predicted Routing Delays2
tRD1
FO=1 Routing Delay
1.3
1.5
ns
tRD2
FO=2 Routing Delay
1.9
2.1
ns
tRD3
FO=3 Routing Delay
2.1
2.5
ns
tRD4
FO=4 Routing Delay
2.6
2.9
ns
tRD8
FO=8 Routing Delay
4.2
4.9
ns
Logic Module Sequential Timing
tSUD
Flip-Flop (Latch) Data Input Setup
1.0
ns
tHD
Flip-Flop (Latch) Data Input Hold
0.6
ns
tSUENA
Flip-Flop (Latch) Enable Setup
1.0
ns
tHENA
Flip-Flop (Latch) Enable Hold
0.6
ns
tWASYN
Asynchronous Pulse Width
4.8
5.6
ns
tWCLKA
Flip-Flop Clock Pulse Width
4.8
5.6
ns
tA
Flip-Flop Clock Input Period
9.9
11.6
ns
fMAX
Flip-Flop Clock Frequency
100
85
MHz
Input Module Propagation Delays
tINY
Input Data Pad to Y
4.2
4.9
ns
tICKY
Input Reg IOCLK Pad to Y
7.0
8.2
ns
tOCKY
Output Reg IOCLK Pad to Y
7.0
8.2
ns
tICLRY
Input Asynchronous Clear to Y
7.0
8.2
ns
tOCLRY
Output Asynchronous Clear to Y
7.0
8.2
ns
Input Module Predicted Routing Delays2, 3
tIRD1
FO=1 Routing Delay
1.3
1.5
ns
tIRD2
FO=2 Routing Delay
1.9
2.1
ns
tIRD3
FO=3 Routing Delay
2.1
2.5
ns
tIRD4
FO=4 Routing Delay
2.6
2.9
ns
tIRD8
FO=8 Routing Delay
4.2
4.9
ns
Notes:
1.
For dual-module macros, use tPD + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
2.
Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
3.
Optimization techniques may further reduce delays by 0 to 4 ns.
鐩搁棞(gu膩n)PDF璩囨枡
PDF鎻忚堪
A10V20B-VQ80C IC FPGA 2K GATES 80-VQFP COM
A1020B-1VQG80C IC FPGA 2K GATES 80-VQFP COM
FMC17DRYI-S734 CONN EDGECARD 34POS DIP .100 SLD
ESC65DRYS-S734 CONN EDGECARD 130PS DIP .100 SLD
RSC31DTES CONN EDGECARD 62POS .100 EYELET
鐩搁棞(gu膩n)浠g悊鍟�/鎶€琛�(sh霉)鍙冩暩(sh霉)
鍙冩暩(sh霉)鎻忚堪
A1020B-1VQ80I 鍔熻兘鎻忚堪:IC FPGA 2K GATES 80-VQFP IND RoHS:鍚� 椤炲垾:闆嗘垚闆昏矾 (IC) >> 宓屽叆寮� - FPGA锛堢従(xi脿n)鍫村彲绶ㄧ▼闁€闄e垪锛� 绯诲垪:ACT™ 1 鐢�(ch菐n)鍝佸煿瑷撴ā濉�:Three Reasons to Use FPGA's in Industrial Designs Cyclone IV FPGA Family Overview 鐗硅壊鐢�(ch菐n)鍝�:Cyclone? IV FPGAs 妯欐簴鍖呰:60 绯诲垪:CYCLONE® IV GX LAB/CLB鏁�(sh霉):9360 閭忚集鍏冧欢/鍠厓鏁�(sh霉):149760 RAM 浣嶇附瑷�:6635520 杓稿叆/杓稿嚭鏁�(sh霉):270 闁€鏁�(sh霉):- 闆绘簮闆诲:1.16 V ~ 1.24 V 瀹夎椤炲瀷:琛ㄩ潰璨艰 宸ヤ綔婧害:0°C ~ 85°C 灏佽/澶栨:484-BGA 渚涙噳鍟嗚ō鍌欏皝瑁�:484-FBGA锛�23x23锛�
A1020B-1VQ84B 鍒堕€犲晢:ACTEL 鍒堕€犲晢鍏ㄧū:Actel Corporation 鍔熻兘鎻忚堪:ACT 1 Series FPGAs
A1020B-1VQ84C 鍒堕€犲晢:ACTEL 鍒堕€犲晢鍏ㄧū:Actel Corporation 鍔熻兘鎻忚堪:ACT 1 Series FPGAs
A1020B-1VQ84I 鍒堕€犲晢:ACTEL 鍒堕€犲晢鍏ㄧū:Actel Corporation 鍔熻兘鎻忚堪:ACT 1 Series FPGAs
A1020B-1VQ84M 鍒堕€犲晢:ACTEL 鍒堕€犲晢鍏ㄧū:Actel Corporation 鍔熻兘鎻忚堪:ACT 1 Series FPGAs