參數(shù)資料
型號(hào): 30044-23
廠商: NATIONAL SEMICONDUCTOR CORP
元件分類(lèi): 微控制器/微處理器
英文描述: Low Power Integrated x86-Compatible with MMX Support 32-Bit Geode GXm Processor(低功耗集成兼容X86帶有MMX的32位 Geode GXm技術(shù)處理器)
中文描述: 32-BIT, 200 MHz, MICROPROCESSOR, CPGA320
封裝: SPGA-320
文件頁(yè)數(shù): 83/244頁(yè)
文件大?。?/td> 4496K
代理商: 30044-23
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)當(dāng)前第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)第158頁(yè)第159頁(yè)第160頁(yè)第161頁(yè)第162頁(yè)第163頁(yè)第164頁(yè)第165頁(yè)第166頁(yè)第167頁(yè)第168頁(yè)第169頁(yè)第170頁(yè)第171頁(yè)第172頁(yè)第173頁(yè)第174頁(yè)第175頁(yè)第176頁(yè)第177頁(yè)第178頁(yè)第179頁(yè)第180頁(yè)第181頁(yè)第182頁(yè)第183頁(yè)第184頁(yè)第185頁(yè)第186頁(yè)第187頁(yè)第188頁(yè)第189頁(yè)第190頁(yè)第191頁(yè)第192頁(yè)第193頁(yè)第194頁(yè)第195頁(yè)第196頁(yè)第197頁(yè)第198頁(yè)第199頁(yè)第200頁(yè)第201頁(yè)第202頁(yè)第203頁(yè)第204頁(yè)第205頁(yè)第206頁(yè)第207頁(yè)第208頁(yè)第209頁(yè)第210頁(yè)第211頁(yè)第212頁(yè)第213頁(yè)第214頁(yè)第215頁(yè)第216頁(yè)第217頁(yè)第218頁(yè)第219頁(yè)第220頁(yè)第221頁(yè)第222頁(yè)第223頁(yè)第224頁(yè)第225頁(yè)第226頁(yè)第227頁(yè)第228頁(yè)第229頁(yè)第230頁(yè)第231頁(yè)第232頁(yè)第233頁(yè)第234頁(yè)第235頁(yè)第236頁(yè)第237頁(yè)第238頁(yè)第239頁(yè)第240頁(yè)第241頁(yè)第242頁(yè)第243頁(yè)第244頁(yè)
Revision 3.1
83
www.national.com
Processor Programming (
Continued
)
G
3.11.7 SMM Memory Space
SMM memory space is defined by specifying the base
address and size of the SMM memory space in the SMAR
register. The base address must be a multiple of the SMM
memory space size. For example, a 32 KB SMM memory
space must be located at a 32 KB address boundary. The
memory space size can range from 4 KB to 32 MB. Execu-
tion of the interrupt begins at the base of the SMM memory
space.
SMM memory space accesses are always cacheable,
which allows SMM routines to run faster.
3.11.8 SMI Generation
Virtualization software depends on processor-specific
hardware to generate SMI interrupts for each memory or
I/O access to the device being implemented. The GXm
processor implements SMI generation for VGA accesses.
Memory write operations in regions A0000h to AFFFFh,
B0000h to B7FFFh, and B8000h to BFFFFh generate an
SMI.
Memory reads are not trapped by the GXm processor.
The GXm processor traps I/O addresses for VGA in the
following regions: 3B0h to 3BFh, 3C0h to 3CFh, and 3D0h
to 3DFh. Memory-write trapping is performed during
instruction decode in the processor core. I/O read and
write trapping is implemented in the Internal Bus Interface
Unit of the GXm processor.
The SMI-generation hardware requires two additional
configuration registers to control and mask SMI interrupts
in the VGA memory space: VGACTL and VGAM. The
VGACTL register has a control bit for each address range
shown above. The VGAM register has 32 bits that can
selectively disable 2 KB regions within the VGA memory.
The VGAM applies only to the A0000h-to-AFFFFh region.
If this region is not enabled in VGA_CTL, then the con-
tents of VGAM is ignored. The purpose of VGAM is to pre-
vent SMI from occurring when non-displayed VGA
memory is accessed. This is an enhancement which
improves performance for double-buffered applications.
The format of each register is shown in Chapter 4 of this
document.
3.11.9 SMI Service Routine Execution
Upon entry into SMM, after the SMM header has been
saved, the CR0, EFLAGS, and DR7 registers are set to
their reset values. The Code Segment (CS) register is
loaded with the base, as defined by the SMAR register,
and a limit of 4 GBytes. The SMI service routine then
begins execution at the SMM base address in real mode.
The programmer must save the value of any registers that
may be changed by the SMI service routine. For data
accesses immediately after entering the SMI service rou-
tine, the programmer must use CS as a segment override.
I/O port access is possible during the routine but care
must be taken to save registers modified by the I/O
instructions. Before using a segment register, the register
and the register’s descriptor cache contents should be saved
using the SVDC instruction.
Hardware interrupts, INTRs and NMIs, may be serviced
during an SMI service routine. If interrupts are to be ser-
viced while executing in the SMM memory space, the
SMM memory space must be within the address range of
0 to 1 MB to guarantee proper return to the SMI service
routine after handling the interrupt.
INTRs are automatically disabled when entering SMM
since the IF flag (EFLAGS register, bit 9) is set to its reset
value. Once in SMM, the INTR can be enabled by setting
the IF flag. An NMI event in SMM can be enabled by set-
ting NMI_EN high in the CCR3 register (Index C3h[1]). If
NMI is not enabled while in SMM, the CPU latches one
NMI event and services the interrupt after NMI has been
enabled or after exiting SMM through the RSM instruction.
The processor is always in real mode in SMM, but it may
exit to either real or protected mode depending on its
state when SMM was initiated. The IDT (Interrupt Descrip-
tor Table) indicates which state it will exit to.
Within the SMI service routine, protected mode may be
entered and exited as required, and real or protected
mode device drivers may be called.
To exit the SMI service routine, a Resume (RSM) instruc-
tion, rather than an IRET, is executed. The RSM instruc-
tion causes the GXm processor core to restore the CPU
state using the SMM header information and resume exe-
cution at the interrupted point. If the full CPU state was
saved by the programmer, the stored values should be
reloaded before executing the RSM instruction using the
MOV, RSDC, RSLDT and RSTS instructions.
3.11.9.1 SMI Nesting
The SMI mechanism supports nesting of SMI interrupts
through the SMI handler, the SMI_NEST bit in CCR4[6]
(Index E8h), and the Nested SMI Status bit (bit N in the
SMM header, see Table on page 80). Nesting is an impor-
tant capability in allowing high-priority events, such as
audio virtualization, to interrupt lower-priority SMI code for
VGA virtualization or power management. SMI_NEST
controls whether SMI interrupts can occur during SMM.
SMI handlers can optionally set SMI_NEST high to allow
higher-priority SMI interrupts while handling the current
event.
The SMI handler is responsible for managing the SMI
header data for nested SMI interrupts. The SMI header
must be saved before SMI_NEST is set high, and
SMI_NEST must be cleared and its header information
restored before an RSM instruction is executed.
The Nested SMI Status bit has been added to the SMM
header to show whether the current SMI is nested. The
processor sets Nested SMI Status high if the processor
was in SMM when the SMI was taken. The processor
uses Nested SMI Status on exit to determine whether the
processor should stay in SMM.
When SMI nesting is disabled, the processor holds off
external SMI interrupts until the currently executing SMM
code exits. When SMI nesting is enabled, the processor
can proceed with the SMI. The SMI handler will guarantee
相關(guān)PDF資料
PDF描述
30046-23 Low Power Integrated x86-Compatible 32-Bit Geode GXLV Processor(低功耗集成兼容X86的32位 Geode GXLV技術(shù)處理器)
300471U Radial, -55dotc, long life wsitching-power
300CNQ SCHOTTKY RECTIFIER
300CNQ035 SCHOTTKY RECTIFIER
300CNQ040 SCHOTTKY RECTIFIER
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
3004430 功能描述:DIN導(dǎo)軌式接線(xiàn)端子 UK 5-MTK RoHS:否 制造商:Phoenix Contact 類(lèi)型:Feed Through Modular Terminal Block 位置/觸點(diǎn)數(shù)量:1 線(xiàn)規(guī)量程:26-14 電流額定值:5 A, 15 A 電壓額定值:300 V, 600 V 安裝風(fēng)格: 端接類(lèi)型:Push-In
30044-44L 制造商:LENOX 功能描述:HOLE SAW BI-METAL 70MM
3004472 制造商:Phoenix Contact 功能描述:UK 5-HESI (5X20)
300448 功能描述:手工工具 RETAINING PIN RoHS:否 制造商:Molex 產(chǎn)品:Extraction Tools 類(lèi)型: 描述/功能:Extraction tool
300449 制造商:MACOM 制造商全稱(chēng):Tyco Electronics 功能描述:HAND TOOL ASSEMBLY