參數(shù)資料
型號: KIT912F634EVME
廠商: Freescale Semiconductor
文件頁數(shù): 25/339頁
文件大小: 0K
描述: KIT EVAL FOR MM912F634
標(biāo)準(zhǔn)包裝: 1
類型: MCU
適用于相關(guān)產(chǎn)品: MM912F634
所含物品: 板,線纜,CD
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁當(dāng)前第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁第229頁第230頁第231頁第232頁第233頁第234頁第235頁第236頁第237頁第238頁第239頁第240頁第241頁第242頁第243頁第244頁第245頁第246頁第247頁第248頁第249頁第250頁第251頁第252頁第253頁第254頁第255頁第256頁第257頁第258頁第259頁第260頁第261頁第262頁第263頁第264頁第265頁第266頁第267頁第268頁第269頁第270頁第271頁第272頁第273頁第274頁第275頁第276頁第277頁第278頁第279頁第280頁第281頁第282頁第283頁第284頁第285頁第286頁第287頁第288頁第289頁第290頁第291頁第292頁第293頁第294頁第295頁第296頁第297頁第298頁第299頁第300頁第301頁第302頁第303頁第304頁第305頁第306頁第307頁第308頁第309頁第310頁第311頁第312頁第313頁第314頁第315頁第316頁第317頁第318頁第319頁第320頁第321頁第322頁第323頁第324頁第325頁第326頁第327頁第328頁第329頁第330頁第331頁第332頁第333頁第334頁第335頁第336頁第337頁第338頁第339頁
Functional Description and Application Information
Serial Communication Interface (S08SCIV4)
MM912F634
Freescale Semiconductor
120
4.15.3.3
Receiver Functional Description
In this section, the receiver block diagram (Figure 32) is used as a guide for the overall receiver functional description. Next, the
data sampling technique used to reconstruct receiver data is described in more detail. Finally, two variations of the receiver
wake-up function are explained.
The receiver input is inverted by setting RXINV = 1. The receiver is enabled by setting the RE bit in SCIC2. Character frames
consist of a start bit of logic 0, eight (or nine) data bits (LSB first), and a stop bit of logic 1. For information about 9-bit data mode,
refer to Section , “8- and 9-bit data modes".” For the remainder of this discussion, we assume the SCI is configured for normal
8-bit data mode.
After receiving the stop bit into the receive shifter, and provided the receive data register is not already full, the data character is
transferred to the receive data register and the receive data register full (RDRF) status flag is set. If RDRF was already set
indicating the receive data register (buffer) was already full, the overrun (OR) status flag is set and the new data is lost. Because
the SCI receiver is double-buffered, the program has one full character time after RDRF is set before the data in the receive data
buffer must be read to avoid a receiver overrun.
When a program detects that the receive data register is full (RDRF = 1), it gets the data from the receive data register by reading
SCID. The RDRF flag is cleared automatically by a 2-step sequence which is normally satisfied in the course of the user’s
program that handles receive data. Refer to Section 4.15.3.4, “Interrupts and Status Flags"” for more details about flag clearing.
4.15.3.3.1
Data Sampling Technique
The SCI receiver uses a 16
baud rate clock for sampling. The receiver starts by taking logic level samples at 16 times the baud
rate to search for a falling edge on the RxD serial data input pin. A falling edge is defined as a logic 0 sample after three
consecutive logic 1 samples. The 16
baud rate clock is used to divide the bit time into 16 segments labeled RT1 through RT16.
When a falling edge is located, three more samples are taken at RT3, RT5, and RT7 to make sure this was a real start bit and
not merely noise. If at least two of these three samples are 0, the receiver assumes it is synchronized to a receive character.
The receiver then samples each bit time, including the start and stop bits, at RT8, RT9, and RT10 to determine the logic level for
that bit. The logic level is interpreted to be that of the majority of the samples taken during the bit time. In the case of the start bit,
the bit is assumed to be 0 if at least two of the samples at RT3, RT5, and RT7 are 0 even if one or all of the samples taken at
RT8, RT9, and RT10 are 1s. If any sample in any bit time (including the start and stop bits) in a character frame fails to agree
with the logic level for that bit, the noise flag (NF) will be set when the received character is transferred to the receive data buffer.
The falling edge detection logic continuously looks for falling edges, and if an edge is detected, the sample clock is
resynchronized to bit times. This improves the reliability of the receiver in the presence of noise or mismatched baud rates. It
does not improve worst case analysis because some characters do not have any extra falling edges anywhere in the character
frame.
In the case of a framing error, provided the received character was not a break character, the sampling logic that searches for a
falling edge is filled with three logic 1 samples so that a new start bit can be detected almost immediately.
In the case of a framing error, the receiver is inhibited from receiving any new characters until the framing error flag is cleared.
The receive shift register continues to function, but a complete character cannot transfer to the receive data buffer if FE is still set.
4.15.3.3.2
Receiver Wake-up Operation
Receiver wake-up is a hardware mechanism that allows an SCI receiver to ignore the characters in a message that is intended
for a different SCI receiver. In such a system, all receivers evaluate the first character(s) of each message, and as soon as they
determine the message is intended for a different receiver, they write logic 1 to the receiver wake up (RWU) control bit in SCIC2.
When RWU bit is set, the status flags associated with the receiver (with the exception of the idle bit, IDLE, when RWUID bit is
set) are inhibited from setting, thus eliminating the software overhead for handling the unimportant message characters. At the
end of a message, or at the beginning of the next message, all receivers automatically force RWU to 0 so all receivers wake up
in time to look at the first character(s) of the next message.
相關(guān)PDF資料
PDF描述
MRJ0800DD-A C/A MRJ21/MRJ21 GBE STRT CMR 80M
VE-JWF-EZ CONVERTER MOD DC/DC 72V 25W
EBC28DCMD-S288 CONN EDGECARD 56POS .100 EXTEND
RS-4805DZ/H3 CONV DC/DC 2W 18-72VIN +/-05VOUT
38S801C INDUCTOR 0.80UH 12.5A SMD
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
KIT912H634EVME 功能描述:開發(fā)板和工具包 - S08 / S12 DUAL LOW&HIDE SWITCH EVB RoHS:否 產(chǎn)品:Development Kits 工具用于評估:MC9S12G128 核心:S12 接口類型:CAN, LIN, RS-232, USB 工作電源電壓:5 V 制造商:Freescale Semiconductor
KIT912J637EVME 功能描述:電源管理IC開發(fā)工具 BATTERY SENSOR 912J637 RoHS:否 制造商:Maxim Integrated 產(chǎn)品:Evaluation Kits 類型:Battery Management 工具用于評估:MAX17710GB 輸入電壓: 輸出電壓:1.8 V
KIT912S812ECUEVM 功能描述:電源管理IC開發(fā)工具 Single Cylinder S12XS E RoHS:否 制造商:Maxim Integrated 產(chǎn)品:Evaluation Kits 類型:Battery Management 工具用于評估:MAX17710GB 輸入電壓: 輸出電壓:1.8 V
Kit-916 制造商:ANDERSON POWER PRODUCTS 功能描述:KIT
Kit-917 制造商:ANDERSON POWER PRODUCTS 功能描述:KIT