Spartan-3E FPGA Family: Functional Description
DS312 (v4.1) July 19, 2013
Product Specification
20
Supply Voltages for the IOBs
The IOBs are powered by three supplies:
1.
The VCCO supplies, one for each of the FPGA’s I/O
banks, power the output drivers. The voltage on the
VCCO pins determines the voltage swing of the output
signal.
2.
VCCINT is the main power supply for the FPGA’s internal
logic.
3.
VCCAUX is an auxiliary source of power, primarily to
optimize the performance of various FPGA functions
such as I/O switching.
I/O and Input-Only Pin Behavior During
Power-On, Configuration, and User Mode
In this section, all behavior described for I/O pins also
applies to input-only pins and dual-purpose I/O pins that are
not actively involved in the currently-selected configuration
mode.
All I/O pins have ESD clamp diodes to their respective VCCO
supply and from GND, as shown in Figure 5. The VCCINT (1.2V), VCCAUX (2.5V), and VCCO supplies can be applied in
any order. Before the FPGA can start its configuration
process, VCCINT, VCCO Bank 2, and VCCAUX must have
reached their respective minimum recommended operating
levels indicated in
Table 74. At this time, all output drivers
are in a high-impedance state. VCCO Bank 2, VCCINT, and
VCCAUX serve as inputs to the internal Power-On Reset
circuit (POR).
A Low level applied to the HSWAP input enables pull-up
resistors on user-I/O and input-only pins from power-on
throughout configuration. A High level on HSWAP disables
the pull-up resistors, allowing the I/Os to float. HSWAP
contains an internal pull-up resistor and defaults to High if
left floating. As soon as power is applied, the FPGA begins
initializing its configuration memory. At the same time, the
FPGA internally asserts the Global Set-Reset (GSR), which
asynchronously resets all IOB storage elements to a default
Upon the completion of initialization and the beginning of
configuration, INIT_B goes High, sampling the M0, M1, and
M2 inputs to determine the configuration mode.
Configuration data is then loaded into the FPGA. The I/O
drivers remain in a high-impedance state (with or without
pull-up resistors, as determined by the HSWAP input)
throughout configuration.
At the end of configuration, the GSR net is released, placing
the IOB registers in a Low state by default, unless the
loaded design reverses the polarity of their respective SR
inputs.
The Global Three State (GTS) net is released during
Start-Up, marking the end of configuration and the
beginning of design operation in the User mode. After the
GTS net is released, all user I/Os go active while all unused
I/Os are pulled down (PULLDOWN). The designer can
control how the unused I/Os are terminated after GTS is
released by setting the Bitstream Generator (BitGen) option
UnusedPin to PULLUP, PULLDOWN, or FLOAT.
One clock cycle later (default), the Global Write Enable
(GWE) net is released allowing the RAM and registers to
change states. Once in User mode, any pull-up resistors
enabled by HSWAP revert to the user settings and HSWAP
is available as a general-purpose I/O. For more information
Behavior of Unused I/O Pins After
Configuration
By default, the Xilinx ISE development software
automatically configures all unused I/O pins as input pins
with individual internal pull-down resistors to GND.
This default behavior is controlled by the UnusedPin
bitstream generator (BitGen) option, as described in
JTAG Boundary-Scan Capability
All Spartan-3E IOBs support boundary-scan testing
compatible with IEEE 1149.1/1532 standards. During
boundary-scan operations such as EXTEST and HIGHZ the
pull-down resistor is active. See
JTAG Mode for more
information on programming via JTAG.