
ST72361-Auto
147/224
LINSCI
SERIAL COMMUNICATION INTERFACE (LIN Mode) (Cont’d)
CONTROL REGISTER 2 (SCICR2)
Read/Write
Reset Value: 0000 0000 (00h)
Bits 7:2 Same function as in SCI mode, please re-
Bit 1 = RWU Receiver wake-up.
This bit determines if the SCI is in mute mode or
not. It is set and cleared by software and can be
cleared by hardware when a wake-up sequence is
recognized.
0: Receiver in active mode
1: Receiver in mute mode
Notes:
– Mute mode is recommended for detecting only
the Header and avoiding the reception of any
other characters. For more details please refer to
– In LIN slave mode, when RDRF is set, the soft-
ware can not set or clear the RWU bit.
Bit 0 = SBK Send break.
This bit set is used to send break characters. It is
set and cleared by software.
0: No break character is transmitted
1: Break characters are transmitted
Note: If the SBK bit is set to “1” and then to “0”, the
transmitter will send a BREAK word at the end of
the current word.
CONTROL REGISTER 3 (SCICR3)
Read/Write
Reset Value: 0000 0000 (00h)
Bit 7 = LDUM LIN Divider Update Method.
This bit is set and cleared by software and is also
cleared by hardware (when RDRF = 1). It is only
used in LIN Slave mode. It determines how the LIN
Divider can be updated by software.
0: LDIV is updated as soon as LPR is written (if no
Auto Synchronization update occurs at the
same time).
1: LDIV is updated at the next received character
(when RDRF = 1) after a write to the LPR regis-
ter
Notes:
- If no write to LPR is performed between the set-
ting of LDUM bit and the reception of the next
character, LDIV will be updated with the old value.
- After LDUM has been set, it is possible to reset
the LDUM bit by software. In this case, LDIV can
be modified by writing into LPR / LPFR registers.
Bits 6:5 = LINE, LSLV LIN Mode Enable Bits.
These bits configure the LIN mode:
The LIN Master configuration enables:
The capability to send LIN Synch Breaks (13 low
bits) using the SBK bit in the SCICR2 register.
The LIN Slave configuration enables:
– The LIN Slave Baud Rate generator. The LIN
Divider (LDIV) is then represented by the LPR
and LPFR registers. The LPR and LPFR reg-
isters are read/write accessible at the address
of the SCIBRR register and the address of the
SCIETPR register
– Management of LIN Headers.
– LIN Synch Break detection (11-bit dominant).
– LIN Wake-Up method (see LHDM bit) instead
of the normal SCI Wake-Up method.
– Inhibition of Break transmission capability
(SBK has no effect)
– LIN Parity Checking (in conjunction with the
PCE bit)
Bit 4 = LASE LIN Auto Synch Enable.
This bit enables the Auto Synch Unit (ASU). It is
set and cleared by software. It is only usable in LIN
Slave mode.
0: Auto Synch Unit disabled
1: Auto Synch Unit enabled.
Bit 3 = LHDM LIN Header Detection Method
This bit is set and cleared by software. It is only us-
able in LIN Slave mode. It enables the Header De-
tection Method. In addition if the RWU bit in the
7
0
TIE
TCIE
RIE
ILIE
TE
RE
RWU
SBK
7
0
LDUM
LINE
LSLV
LASE
LHDM
LHIE LHDF
LSF
LINE
LSLV
Meaning
0
x
LIN mode disabled
1
0
LIN Master Mode
1
LIN Slave Mode