參數資料
型號: MT92220
廠商: ZARLINK SEMICONDUCTOR INC
元件分類: 數字傳輸電路
英文描述: 1023 Channel Voice Over IP/AAL2 Processor
中文描述: ATM NETWORK INTERFACE, PBGA608
封裝: 31 X 31 MM, 2.50 MM HEIGHT, MS-034, EPBGA-608
文件頁數: 116/210頁
文件大小: 1536K
代理商: MT92220
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁當前第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁
Data Sheet
MT92220
116
Zarlink Semiconductor Inc.
An underrun occurs when not enough data is received by the disassembly module, so the desired write pointer's
lead vs. the TDM read pointer would be smaller than 0. In this case, the write pointer's position is reset to Underrun
Lead + current TDM read pointer.
An overrun occurs when too much data is received by the disassembly module, so the desired write pointer's lead
vs. the TDM read pointer would be greater than Maximum Used Samples in Circular Buffer. In this case, the write
pointer's position is reset to Overrun Lead + current TDM read pointer.
Finally, the Init Lead is used to reset the write pointer when the first packet is received on the channel.
The Underrun Lead and Overrun Lead are used to control the size of slips when they occur. Some algorithms prefer
to place both the Underrun Lead and Overrun Lead at the center of the buffer, which minimizes the number of slips,
but causes large slips and may add as much as (Maximum Used Samples in Circular Buffer / 2) of extra delay.
Another possible algorithm is to place both the Underrun Lead and Init Lead to a small value K (e.g. 8 samples) and
the Overrun Lead to (Maximum Used Samples in Circular Buffer - K). This causes slips of 8 bytes, may results in
multiple slips, but ensures that no more than K samples of delay are ever inserted on the data.
The MT92220 PDV monitoring may be used to control the end-to-end delay experienced on a given channel. To do
so, the software initializes the Desired Remote/Local Timestamp Delta field to 0. This gives the expected delta
between the timestamp in the RTP packet and the timestamp on the H.110 bus. The chip then Overruns and
Underruns according to the need and settles within its PDV window. Each slip affects the Total Slip Offset Delta,
which measures by how many samples the actual delta is off from the Desired Remote/Local Timestamp Delta.
Software can then come and fix the Desired Remote/Local Timestamp Delta by adding to it the Total Slip Offset
Delta and resetting the Total Slip Offset Delta. Note that a Total Slip Offset Delta of 12 and a Desired Remote/Local
Timestamp Delta of 35 is the same as a Total Slip Offset Delta of 0 and a Desired Remote/Local Timestamp Delta of
47.
The Minimum Delta gives the smallest value of Remote vs. Local delta seen so far (Minimum Delta means earliest
packet, so the packet most likely to cause an overrun) while the Maximum Delta gives the largest value of Remote
vs. Local delta seen so far (Maximum Delta means latest packet, so the packet most likely to cause an underrun).
Thanks to this diagnostic, software can choose to change the Desired Remote/Local Timestamp Delta by another
value, if, for example, the Maximum Delta indicates that a packet has been seen that would cause the current delta
values to slip (this might be an indication that the PDV window is too small). If so, this will cause a slip and the
software can choose when it wants the slip to occur. It can occur immediately, by setting the RSO (Reset Total Slip
Offset Delta Once) bit, which will cause it to slip on the next packet. It can also wait for a packet with a marker bit =
'1' by setting the RSM (Reset Total Slip Offset Delta on Marker). Finally, it can choose to reset when a significant
amount of data has been lost by setting the RSL (Reset Total Slip Offset on Loss) bit. The Min Slip field defines
what a "significant" amount of data is in 2
n
increments, between 2 ms and 256 ms.
Some application may want the end-to-end delay to be fixed and unchanging, even in the case of slips. If that is the
case, setting the RSA (Reset Total Slip Offset Delta Always) will ensure that the Total Slip Offset Delta never
changes, which disables slips. This could lead to a loss of data integrity in the case of Underruns (or Overruns, but
only if they manage to overflow the entire physical circular buffer, not only the section reserved by Maximum Used
Samples in Circular Buffer).
This end-to-end delay control may be used in several applications:
End-to-end slipless framing
. This setup allows one or multiple PCM bearers to be transported end-to-end
over a packet network without slips.
Clear-channel DS3
. Because the PDV monitoring allows multiple PCM channels to connect to a single
Common PDV Absorption Structure, up to 1023 individual PCM bearers could use the same PDV
information; this environment could tolerate slips where a single channel could cause a slip on all channels,
maintaining the end-to-end delay across all channels.
Interchip synchronization
. Because the desired Remote/Local Timestamp delta is an absolute value (not
relative to anything inside the chip), multiple chips can maintain the same end-to-end delay. The only
requirement here is that all sources be capable of generating synchronized timestamps. MT92220 is
capable of this because multiple chips can slave off the same H.110 bus timestamp.
Glitchless fallback
. Because multiple chips can maintain delay consistency, channels and connections can
be swapped from one chip to another without a single byte loss.
相關PDF資料
PDF描述
MT9300B Multi-Channel Voice Echo Canceller
MT9300BL Multi-Channel Voice Echo Canceller
MT9300BV Multi-Channel Voice Echo Canceller
MT9315 CMOS Acoustic Echo Canceller
MT933 3.3V 10/100 Fast Ethernet Transceiver to MII
相關代理商/技術參數
參數描述
MT92220BG 制造商:Microsemi Corporation 功能描述:
MT9234MU 功能描述:MODEM V.92 DATA/FAX USB WORLD RoHS:是 類別:計算機,辦公室 - 元件,配件 >> 調制解調器 系列:MultiMobile™ USB 標準包裝:1 系列:MultiModem® ZBA 數據格式:V.34,V.92 波特率:- 電源電壓:- 安裝類型:臺式 封裝/外殼:5.7" L x 4.3" W x 1.0" H(145mm x 109mm x 25mm) 供應商設備封裝:- 包裝:散裝
MT9234MU-CDC 功能描述:MODEM V.92 DATA/FAX USB WORLD RoHS:是 類別:計算機,辦公室 - 元件,配件 >> 調制解調器 系列:MultiMobile™ USB 標準包裝:1 系列:MultiModem® ZBA 數據格式:V.34,V.92 波特率:- 電源電壓:- 安裝類型:臺式 封裝/外殼:5.7" L x 4.3" W x 1.0" H(145mm x 109mm x 25mm) 供應商設備封裝:- 包裝:散裝
MT9234MU-CDC-CP 功能描述:MODEM V.92 DATA/FAX USB WORLD 25 RoHS:是 類別:計算機,辦公室 - 元件,配件 >> 調制解調器 系列:MultiMobile™ USB 標準包裝:1 系列:MultiModem® ZBA 數據格式:V.34,V.92 波特率:- 電源電壓:- 安裝類型:臺式 封裝/外殼:5.7" L x 4.3" W x 1.0" H(145mm x 109mm x 25mm) 供應商設備封裝:- 包裝:散裝
MT9234MU-CDC-XR 功能描述:MODEM V.92 DATA/FAX USB WORLD RoHS:是 類別:計算機,辦公室 - 元件,配件 >> 調制解調器 系列:MultiMobile™ USB 標準包裝:1 系列:MultiModem® ZBA 數據格式:V.34,V.92 波特率:- 電源電壓:- 安裝類型:臺式 封裝/外殼:5.7" L x 4.3" W x 1.0" H(145mm x 109mm x 25mm) 供應商設備封裝:- 包裝:散裝