參數(shù)資料
型號: CY7C1223F
廠商: Cypress Semiconductor Corp.
英文描述: 2-Mb (128K x 18) Pipelined DCD Sync SRAM
中文描述: 2 MB的(128K的× 18)流水線雙氰胺同步靜態(tài)存儲器
文件頁數(shù): 5/15頁
文件大小: 328K
代理商: CY7C1223F
CY7C1223F
Document #: 38-05418 Rev. *A
Page 5 of 15
Functional Overview
All synchronous inputs pass through input registers controlled
by the rising edge of the clock. All data outputs pass through
output registers controlled by the rising edge of the clock.
The CY7C1223F supports secondary cache in systems
utilizing either a linear or interleaved burst sequence. The
interleaved burst order supports Pentium and i486
processors. The linear burst sequence is suited for processors
that utilize a linear burst sequence. The burst order is user
selectable, and is determined by sampling the MODE input.
Accesses can be initiated with either the Processor Address
Strobe (ADSP) or the Controller Address Strobe (ADSC).
Address advancement through the burst sequence is
controlled by the ADV input. A two-bit on-chip wraparound
burst counter captures the first address in a burst sequence
and automatically increments the address for the rest of the
burst access.
Byte write operations are qualified with the Byte Write Enable
(BWE) and Byte Write Select (BW
[A:B]
) inputs. A Global Write
Enable (GW) overrides all byte write inputs and writes data to
all four bytes. All writes are simplified with on-chip
synchronous self-timed write circuitry.
Synchronous Chip Selects CE
1
, CE
2
, CE
3
and an
asynchronous Output Enable (OE) provide for easy bank
selection and output three-state control. ADSP is ignored if
CE
1
is HIGH.
Single Read Accesses
This access is initiated when the following conditions are
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)
chip selects are all asserted active, and (3) the Write signals
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE
1
is HIGH. The address presented to the address inputs is
stored into the address advancement logic and the Address
Register while being presented to the memory core. The corre-
sponding data is allowed to propagate to the input of the
Output Registers. At the rising edge of the next clock the data
is allowed to propagate through the output register and onto
the data bus within t
CO
if OE is active LOW. The only exception
occurs when the SRAM is emerging from a deselected state
to a selected state, its outputs are always three-stated during
the first cycle of the access. After the first cycle of the access,
the outputs are controlled by the OE signal. Consecutive
single read cycles are supported.
The CY7C1223F is a double-cycle deselect part. Once the
SRAM is deselected at clock rise by the chip select and either
ADSP or ADSC signals, its output will three-state immediately
after the next clock rise.
Single Write Accesses Initiated by ADSP
This access is initiated when both of the following conditions
are satisfied at clock rise: (1) ADSP is asserted LOW, and (2)
chip select is asserted active. The address presented is
loaded into the address register and the address
advancement logic while being delivered to the memory core.
The write signals (GW, BWE, and BW
[A:B]
) and ADV inputs are
ignored during this first cycle.
ADSP triggered write accesses require two clock cycles to
complete. If GW is asserted LOW on the second clock rise, the
data presented to the DQx inputs is written into the corre-
sponding address location in the memory core. If GW is HIGH,
then the write operation is controlled by BWE and BW
[A:B]
signals. The CY7C1223F provides Byte Write capability that
is described in the Write Cycle Description table. Asserting the
Byte Write Enable input (BWE) with the selected Byte Write
input will selectively write to only the desired bytes. Bytes not
selected during a Byte Write operation will remain unaltered.
A synchronous self-timed write mechanism has been provided
to simplify the Write operations.
Because the CY7C1223F is a common I/O device, the Output
Enable (OE) must be deasserted HIGH before presenting data
to the DQ
inputs. Doing so will three-state the output drivers.
As a safety precaution, DQ are automatically three-stated
whenever a write cycle is detected, regardless of the state of
OE.
Single Write Accesses Initiated by ADSC
ADSC write accesses are initiated when the following condi-
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is
deasserted HIGH, (3) chip select is asserted active, and (4)
the appropriate combination of the write inputs (GW, BWE,
and BW
[A:B]
) are asserted active to conduct a write to the
desired byte(s). ADSC triggered write accesses require a
single clock cycle to complete. The address presented is
loaded into the address register and the address
advancement logic while being delivered to the memory core.
The ADV input is ignored during this cycle. If a global write is
conducted, the data presented to the DQ
X
is written into the
corresponding address location in the memory core. If a byte
write is conducted, only the selected bytes are written. Bytes
not selected during a byte write operation will remain
unaltered. A synchronous self-timed write mechanism has
been provided to simplify the write operations.
Because the CY7C1223F is a common I/O device, the Output
Enable (OE) must be deasserted HIGH before presenting data
to the DQ
X
inputs. Doing so will three-state the output drivers.
As a safety precaution, DQ
X
are automatically three-stated
whenever a write cycle is detected, regardless of the state of
OE.
NC
1,2,3,6,7,14,
16,25,28,29,
30,38,39,42,
43,50,51,52,
53,56,57,66,
75,78,79,95,
96
No Connects
. Not internally connected to the die.
Pin Descriptions
(continued)
Pin
TQFP
Type
Description
相關(guān)PDF資料
PDF描述
CY7C1243V18-300BZI 36-Mbit QDR⑩-II+ SRAM 4-Word Burst Architecture (2.0 Cycle Read Latency)
CY7C1241V18 36-Mbit QDR⑩-II+ SRAM 4-Word Burst Architecture (2.0 Cycle Read Latency)
CY7C1241V18-300BZC 36-Mbit QDR⑩-II+ SRAM 4-Word Burst Architecture (2.0 Cycle Read Latency)
CY7C1241V18-300BZI 36-Mbit QDR⑩-II+ SRAM 4-Word Burst Architecture (2.0 Cycle Read Latency)
CY7C1241V18-300BZXC 36-Mbit QDR⑩-II+ SRAM 4-Word Burst Architecture (2.0 Cycle Read Latency)
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
CY7C1223F-133AC 制造商:Rochester Electronics LLC 功能描述:- Bulk 制造商:Cypress Semiconductor 功能描述:
CY7C1223H-166AXC 制造商:Cypress Semiconductor 功能描述:SRAM SYNC SGL 3.3V 2MBIT 128KX16 3.5NS 100TQFP - Bulk
CY7C1231H-133AXC 功能描述:靜態(tài)隨機(jī)存取存儲器 128KX18 NoBL FT 靜態(tài)隨機(jī)存取存儲器 RoHS:否 制造商:Cypress Semiconductor 存儲容量:16 Mbit 組織:1 M x 16 訪問時(shí)間:55 ns 電源電壓-最大:3.6 V 電源電壓-最小:2.2 V 最大工作電流:22 uA 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:TSOP-48 封裝:Tray
CY7C123-7VC 制造商:Cypress Semiconductor 功能描述:Static RAM, 256x4, 24 Pin, Plastic, SOJ
CY7C1243KV18-400BZC 功能描述:靜態(tài)隨機(jī)存取存儲器 36MB (2Mx18) 1.8v 400MHz QDR II 靜態(tài)隨機(jī)存取存儲器 RoHS:否 制造商:Cypress Semiconductor 存儲容量:16 Mbit 組織:1 M x 16 訪問時(shí)間:55 ns 電源電壓-最大:3.6 V 電源電壓-最小:2.2 V 最大工作電流:22 uA 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:TSOP-48 封裝:Tray