參數(shù)資料
型號: 935263151557
廠商: NXP SEMICONDUCTORS
元件分類: 消費家電
英文描述: SPECIALTY CONSUMER CIRCUIT, PQFP240
封裝: 32 X 32 MM, 3.40 MM HEIGHT, MSQFP-240
文件頁數(shù): 107/518頁
文件大?。?/td> 7111K
代理商: 935263151557
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁當前第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁第229頁第230頁第231頁第232頁第233頁第234頁第235頁第236頁第237頁第238頁第239頁第240頁第241頁第242頁第243頁第244頁第245頁第246頁第247頁第248頁第249頁第250頁第251頁第252頁第253頁第254頁第255頁第256頁第257頁第258頁第259頁第260頁第261頁第262頁第263頁第264頁第265頁第266頁第267頁第268頁第269頁第270頁第271頁第272頁第273頁第274頁第275頁第276頁第277頁第278頁第279頁第280頁第281頁第282頁第283頁第284頁第285頁第286頁第287頁第288頁第289頁第290頁第291頁第292頁第293頁第294頁第295頁第296頁第297頁第298頁第299頁第300頁第301頁第302頁第303頁第304頁第305頁第306頁第307頁第308頁第309頁第310頁第311頁第312頁第313頁第314頁第315頁第316頁第317頁第318頁第319頁第320頁第321頁第322頁第323頁第324頁第325頁第326頁第327頁第328頁第329頁第330頁第331頁第332頁第333頁第334頁第335頁第336頁第337頁第338頁第339頁第340頁第341頁第342頁第343頁第344頁第345頁第346頁第347頁第348頁第349頁第350頁第351頁第352頁第353頁第354頁第355頁第356頁第357頁第358頁第359頁第360頁第361頁第362頁第363頁第364頁第365頁第366頁第367頁第368頁第369頁第370頁第371頁第372頁第373頁第374頁第375頁第376頁第377頁第378頁第379頁第380頁第381頁第382頁第383頁第384頁第385頁第386頁第387頁第388頁第389頁第390頁第391頁第392頁第393頁第394頁第395頁第396頁第397頁第398頁第399頁第400頁第401頁第402頁第403頁第404頁第405頁第406頁第407頁第408頁第409頁第410頁第411頁第412頁第413頁第414頁第415頁第416頁第417頁第418頁第419頁第420頁第421頁第422頁第423頁第424頁第425頁第426頁第427頁第428頁第429頁第430頁第431頁第432頁第433頁第434頁第435頁第436頁第437頁第438頁第439頁第440頁第441頁第442頁第443頁第444頁第445頁第446頁第447頁第448頁第449頁第450頁第451頁第452頁第453頁第454頁第455頁第456頁第457頁第458頁第459頁第460頁第461頁第462頁第463頁第464頁第465頁第466頁第467頁第468頁第469頁第470頁第471頁第472頁第473頁第474頁第475頁第476頁第477頁第478頁第479頁第480頁第481頁第482頁第483頁第484頁第485頁第486頁第487頁第488頁第489頁第490頁第491頁第492頁第493頁第494頁第495頁第496頁第497頁第498頁第499頁第500頁第501頁第502頁第503頁第504頁第505頁第506頁第507頁第508頁第509頁第510頁第511頁第512頁第513頁第514頁第515頁第516頁第517頁第518頁
Philips Semiconductors
Image Co-Processor
File: icp.fm5, modified 7/26/99
PRELIMINARY INFORMATION
13-9
pass mode uses input pixels that are nearest the output
pixel and those nearest each of the four output pixels ad-
jacent to the output pixel. The shift bypass mode also
forces the coefficient RAM inputs to zero, since you are
no longer interpolating between adjacent input pixels.
Using Scaling to Convert From YUV 4:2:0 to YUV 4:2:2
YUV information in the 4:2:0 format has the UV pixels off-
set from the input grid in both X and Y. Also, the U and V
pixels are at 1/2 of the horizontal and 1/2 of the vertical
frequencies of the Y pixels. This means the UV pixels
must be filtered and additionally scaled in both X and Y
in order to line up with the output Y pixels even if no initial
scaling is done. To generate 4:2:2 interspersed data, you
vertically up scale U and V by a factor of 2 with a start off-
set of -1/4 pixel. Upscaling by 2 generates the additional
lines required, and starting with a -1/4 pixel offset (rela-
tive to U, V space) moves the output up to the same line
as the Y pixels. To generate 4:2:2 co-sited, you then filter
horizontally with no scaling factor but with a start offset of
-1/4 pixel, moving the output left 1/4 pixel.
13.5.4
YUV to RGB Conversion
In the ICP, YUV to RGB conversion is done by sequen-
tially processing triplets of Y, U, and V pixel data to con-
vert the pixels to an internal YUV 4:4:4 format and apply-
ing the YUV to RGB conversion algorithm on the YUV
4:4:4 pixels. The results of this conversion normally go to
the PCI bus but can also go back to SDRAM.
YUV to RGB conversion has two steps. First you get the
Y, U and a V pixel data to generate an RGB pixel at the
output. Second, YUV to RGB conversion is done once
the Y, U and V pixels are ready. YUV to RGB conversion
uses the following algorithms:
R
= Y + 1.375(V)= Y + (1 + 3/8)(V)
G
= Y - 0.34375(U) - 0.703125(V)
= Y - (11/32)(U) - (45/64)(V)
B
= Y + 1.734375(U)
= Y + (1 + 47/64)(U)
In CCIR601, the U and V values are offset by +128 by in-
verting the most significant bit of the 8-bit byte. This is the
way the U and V values are stored in SDRAM. The above
algorithms assume that the U and V values are convert-
ed back to normal signed two’s complement values by in-
verting the MSB before being used.
13.5.5
Overlay and Alpha Blending
The ICP has the ability to add an overlay image to the
main image when in the horizontal filter to RGB/YUV
mode with PCI output. The overlay image is a user de-
fined rectangle within the main image. When the overlay
is active, each overlay pixel is combined with each main
image pixel to generate the resulting pixel to be dis-
played. Each pixel combination is controlled by an alpha
value which determines the proportions of overlay and
main image that contribute to the output pixel. The rela-
tion is given by:
Pout = (alpha) * Poverlay + (1-alpha) * Pmain =
(alpha) * (Poverlay-Pmain) + Pmain
where: alpha ranges from 0 to 1
In the ICP, the alpha value range is limited by the hard-
ware to five values: {0.0, 0.25, 0.50, 0.75, 1.0}.
An alpha value is supplied for each overlay pixel. In the
RGB 24+
α overlay data format: the 8-bit alpha value is
contained within the overlay data. In all other overlay
data formats (RGB 15+
α, etc.), an alpha bit in the overlay
data determines the alpha value. The alpha bit selects
between two 8-bit values, alpha 1 and alpha 0, supplied
by a pair of internal ICP registers. These registers are
loaded from the parameter block when the ICP is started.
When the alpha bit is one, alpha 1 value is used as the
alpha value; when the alpha bit is zero, alpha 0 is used
as the alpha value. The two alpha registers allow trans-
lucent images and backgrounds while being restricted to
one bit per pixel for alpha selection.
Alpha blending has several uses.
1. Alpha can be used to disable portions of the overlay,
called keying. When the alpha for a pixel is zero, there
is no overlay. When the alpha is 1, the overlay is
100%, replacing the image. This allows the user to put
an irregular shaped object in an image without show-
ing the bounding rectangle of the overlay.
2. Alpha blending allows translucent (“smoky”) back-
grounds and/or translucent (“ghostly”) overlay images
3. Using alpha at the edges of small images such as font
characters increases their effective visual resolution.
Chroma Keying
The ICP also provides optional chroma keying. It is a re-
stricted form of chroma keying, sometimes called color
keying. When the overlay Y value is zero (an illegal value
in the YUV 4:2:2+
α format) or the RGB values are all
zero (RGB15+
α format), the alpha value is forced to zero
and no overlay or blending occurs. This provides three
levels of overlay: no overlay, alpha zero and alpha one.
This combination can be used to generate an irregularly
shaped menu (an oval shape, for example) which is
translucent (with an alpha value of 50%, for example)
and containing opaque (alpha = 100%) letters. In a
game, this could be a message written on a foggy back-
ground in an oval window. The chroma keying provides
the definition of the oval shape, the alpha zero value de-
fines the translucent foggy background and the alpha
one value defines the opaque characters on the foggy
background.
Chroma keying in the ICP is intended for computer gen-
erated or modified overlays. Chroma keying turns off the
overlay process for selected pixels by forcing an alpha
value of zero for those pixels. Chroma keyed pixels use
special codes to identify them. These codes must be
computer generated in most cases. For example, the
DSPCPU or other CPU would process an overlay image
and convert the overlay pixels to be turned off into chro-
ma keyed pixels by changing the data for those pixels to
the chroma key code.
相關PDF資料
PDF描述
935263331557 SPECIALTY CONSUMER CIRCUIT, PQFP240
935263133112 26 W, 1 CHANNEL, AUDIO AMPLIFIER, PZIP17
935263384118 SPECIALTY ANALOG CIRCUIT, PDSO16
935263384112 SPECIALTY ANALOG CIRCUIT, PDSO16
935263512112 TRIPLE 2-CHANNEL, SGL ENDED MULTIPLEXER, PDSO16
相關代理商/技術參數(shù)
參數(shù)描述
935264217557 制造商:NXP Semiconductors 功能描述:SUB ONLY IC
935267356112 制造商:NXP Semiconductors 功能描述:IC TEA1507PN
935268081112 制造商:NXP Semiconductors 功能描述:SUB ONLY IC
935268721125 制造商:NXP Semiconductors 功能描述:Buffer/Line Driver 1-CH Non-Inverting 3-ST CMOS 5-Pin TSSOP T/R
935269304128 制造商:ST-Ericsson 功能描述:IC AUDIO CODEC W/TCH SCRN 48LQFP