參數(shù)資料
型號(hào): 82C836A
廠商: Electronic Theatre Controls, Inc.
英文描述: Single-Chip 386sx AT
中文描述: 單芯片386sx在
文件頁(yè)數(shù): 49/205頁(yè)
文件大小: 3878K
代理商: 82C836A
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)當(dāng)前第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)第158頁(yè)第159頁(yè)第160頁(yè)第161頁(yè)第162頁(yè)第163頁(yè)第164頁(yè)第165頁(yè)第166頁(yè)第167頁(yè)第168頁(yè)第169頁(yè)第170頁(yè)第171頁(yè)第172頁(yè)第173頁(yè)第174頁(yè)第175頁(yè)第176頁(yè)第177頁(yè)第178頁(yè)第179頁(yè)第180頁(yè)第181頁(yè)第182頁(yè)第183頁(yè)第184頁(yè)第185頁(yè)第186頁(yè)第187頁(yè)第188頁(yè)第189頁(yè)第190頁(yè)第191頁(yè)第192頁(yè)第193頁(yè)第194頁(yè)第195頁(yè)第196頁(yè)第197頁(yè)第198頁(yè)第199頁(yè)第200頁(yè)第201頁(yè)第202頁(yè)第203頁(yè)第204頁(yè)第205頁(yè)
Three different types of local memory cycles can occur (listed in order of increasing
cycle time):
Page hit: -RAS is already active and the row address is already valid, so only -CAS
needs to be cycled.
RAS high: -RAS for the target bank is high initially, so there is no need to wait for
-RAS precharge time.
Page miss: Access to the same bank, but with a different row address, so -RAS must
be cycled high and low before -CAS timing can begin.
The major difference between MRA and SRA modes, and the reason for implementing
MRA mode, is the performance improvement in bank switch cycles. ‘‘Bank switch’’
means accessing a different DRAM bank than the preceding DRAM access. With MRA
mode, RAS for the new bank frequently will be already active from an earlier access, so
the bank switch can be performed without any delay for RAS cycling. The result is a
cycle equal in speed to a page hit. In contrast, SRA mode forces all bank switch cycles
to be RAS high cycles, since RAS for the new bank will always be high initially.
T-state counts for these cycles are as follows:
Page hit read is 0WS
Page hit write is 1WS
RAS high read or write, nonencoded RAS is 1WS
RAS high read or write, encoded RAS is 2WS
Page miss, same bank, read or write is 3WS
The total number of T-states for pipelined cycles is the WS amount plus 2; for
nonpipelined cycles, WS plus 3. If EMS is enabled, one further T-state is added for all
cycle types for accesses that require address translation. A minimum of 2.5 T-states are
always allowed for read data access from -RAS (100ns at 25MHz CPU speed, 125ns at
20MHz CPU speed, 156ns at 16MHz CPU speed). This allows the use of 60ns DRAMs
at 25MHz, 80ns DRAMs at 20MHz, or 100ns DRAMs at 16MHz.
The majority of all memory accesses are instruction fetches, which tend to cluster in short
bursts of accesses in highly localized address ranges. Even jump operations frequently
are localized. Thus, paging usually results in substantial performance improvement over
nonpaged memory timing, since a high percentage of memory cycles can be -CAS only.
In addition to paging, four-way page interleaving is automatically performed in Banks
0-3 whenever they all contain the same size DRAM (configurations 05H, 0EH and 13H
through 16H). Page interleaving means that the physical DRAM pages (-CAS only
adressable blocks) are interleaved in sequence across the four banks i.e., page n in Bank
0, n+1 in Bank 1, n+2 in Bank 2, n+3 in Bank 3, n+4 in Bank 0 again, and so on. This
has the effect of increasing the relative probability of bank switch cycles over page
misses; resulting in significant performance improvement over simple paging without
interleaving.
Similarly, if Banks 4-7 are enabled and contain the same size DRAMs, four-way page
interleaving is automatically performed in those four banks. Refer to configurations 12H
and 16H in Table 5-2 (shown earlier).
I
DRAM Interface
System Interface
5-8
Revision 3.0
P R E L I M I N A R Y
Chips and Technologies, Inc.
相關(guān)PDF資料
PDF描述
82C836A-16 Single-Chip 386sx AT
82C836A-20 Single-Chip 386sx AT
82C836B Single-Chip 386sx AT
82C862 FireLink USB Dual Controller Quad Port USB
82C931 Plug and Play Integrated Audio Controller
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
82C836A-16 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Single-Chip 386sx AT
82C836A-20 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Single-Chip 386sx AT
82C836B 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Single-Chip 386sx AT
82C83H 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:CMOS Octal Latching Inverting Bus Driver
82C84 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:CMOS Clock Generator Driver