
ZL50212
Data Sheet
12
Zarlink Semiconductor Inc.
The NLInc sub-register in Noise Control is used to set the ramping speed. When InjCtrl = 1 (such as with the
Advanced NLP), a lower value will give faster ramping. When InjCtrl = 0 (such as with the original NLP), a higher
value will give faster ramping. NLInc is a 4-bit value, so only values from 0 to F(hex) are valid.
The Noise Scaling register can be used to adjust the relative volume of the comfort noise. Lowering this value will
scale the injected noise level down, conversely, raising the value will scale the comfort noise up. Due to differences
in the noise estimator operation, the Advanced NLP requires a different scaling value than the original NLP.
IMPORTANT NOTE: NLInc and the Noise Scaling register have been pre-programmed with G.168 compliant values.
Changing these values may result in undesirable comfort noise performance!
The Advanced NLP also contains safeguards to prevent double-talk and uncancelled echo from being mistaken for
background noise. These features were not present in the original NLP. They can be disabled by setting the NLRun1
and NLRun2 bits in Control Register 3 to “0”.
2.3
Disable Tone Detector
The G.165 recommendation defines the disable tone as having the following characteristics: 2100 Hz (
±
21Hz) sine
wave, a power level between -6 to -31 dBm0, and a phase reversal of 180 degrees (± 25 degrees) every 450 ms (±25
ms). If the disable tone is present for a minimum of one second with at least one phase reversal, the Tone Detector
will trigger.
The G.164 recommendation defines the disable tone as a 2100 Hz (+21 Hz) sine wave with a power level between
0 to -31 dBm0. If the disable tone is present for a minimum of 400 ms, with or without phase reversal, the Tone
Detector will trigger.
Each EVP has two Tone Detectors per channels (for a total of 64) in order to monitor the occurrence of a valid disable
tone on both Rin and Sin. Upon detection of a disable tone, TD bit of the Status Register will indicate logic high and
an interrupt is generated (i.e. IRQ pin low). Refer to Figure 5 and to the
Interrupts
section.
Figure 5 - Disable Tone Detection
Once a Tone Detector has been triggered, there is no longer a need for a valid disable tone (G.164 or G.165) to
maintain Tone Detector status (i.e. TD bit high). The Tone Detector status will only release (i.e. TD bit low) if the
signals Rin and Sin fall below -30 dBm0, in the frequency range of 390 Hz to 700 Hz, and below -34 dBm0, in the
frequency range of 700 Hz to 3400 Hz, for at least 400 ms. Whenever a Tone Detector releases, an interrupt is
generated (i.e. IRQ pin low).
The selection between G.165 and G.164 tone disable is controlled by the PHDis bit in Control Register 2 on a per
channel basis. When the PHDis bit is set to “1”, G.164 tone disable requirements are selected.
In response to a valid disable tone, the echo canceller must be switched from the Enable Adaptation state to the
Bypass state. This can be done in two ways, automatically or externally. In automatic mode, the Tone Detectors
TD bit
Rin
Sin
Echo Canceller A
Tone
Detector
Tone
Detector
Status reg
ECA
TD
bit
Rin
Sin
Echo Canceller B
Tone
Detector
Tone
Detector
Status reg
ECB