參數(shù)資料
型號(hào): XC2S100-5FG456C
廠商: Xilinx Inc
文件頁(yè)數(shù): 24/99頁(yè)
文件大?。?/td> 0K
描述: IC FPGA 2.5V 600 CLB'S 456-FBGA
標(biāo)準(zhǔn)包裝: 1
系列: Spartan®-II
LAB/CLB數(shù): 600
邏輯元件/單元數(shù): 2700
RAM 位總計(jì): 40960
輸入/輸出數(shù): 196
門(mén)數(shù): 100000
電源電壓: 2.375 V ~ 2.625 V
安裝類(lèi)型: 表面貼裝
工作溫度: 0°C ~ 85°C
封裝/外殼: 456-BBGA
供應(yīng)商設(shè)備封裝: 456-FBGA
產(chǎn)品目錄頁(yè)面: 599 (CN2011-ZH PDF)
其它名稱(chēng): 122-1227
XC2S100-5FG456C-ND
Spartan-II FPGA Family: Functional Description
DS001-2 (v2.8) June 13, 2008
Module 2 of 4
Product Specification
30
R
Startup Delay Property
This property, STARTUP_WAIT, takes on a value of TRUE
or FALSE (the default value). When TRUE the Startup
Sequence following device configuration is paused at a
user-specified point until the DLL locks. XAPP176:
Configuration and Readback of the Spartan-II and
Spartan-IIE Families explains how this can result in delaying
the assertion of the DONE pin until the DLL locks.
DLL Location Constraints
The DLLs are distributed such that there is one DLL in each
corner of the device. The location constraint LOC, attached
to the DLL primitive with the numeric identifier 0, 1, 2, or 3,
controls DLL location. The orientation of the four DLLs and
their corresponding clock resources appears in Figure 27.
The LOC property uses the following form.
LOC = DLL2
Design Considerations
Use the following design considerations to avoid pitfalls and
improve success designing with Xilinx devices.
Input Clock
The output clock signal of a DLL, essentially a delayed
version of the input clock signal, reflects any instability on
the input clock in the output waveform. For this reason the
quality of the DLL input clock relates directly to the quality of
the output clock waveforms generated by the DLL. The DLL
input clock requirements are specified in the "DLL Timing
Parameters" section of the data sheet.
In most systems a crystal oscillator generates the system
clock. The DLL can be used with any commercially
available quartz crystal oscillator. For example, most crystal
oscillators produce an output waveform with a frequency
tolerance of 100 PPM, meaning 0.01 percent change in the
clock period. The DLL operates reliably on an input
waveform with a frequency drift of up to 1 ns — orders of
magnitude in excess of that needed to support any crystal
oscillator in the industry. However, the cycle-to-cycle jitter
must be kept to less than 300 ps in the low frequencies and
150 ps for the high frequencies.
Input Clock Changes
Changing the period of the input clock beyond the
maximum drift amount requires a manual reset of the
CLKDLL. Failure to reset the DLL will produce an unreliable
lock signal and output clock.
It is possible to stop the input clock in a way that has little
impact to the DLL. Stopping the clock should be limited to
less than approximately 100
μs to keep device cooling to a
minimum and maintain the validity of the current tap setting.
The clock should be stopped during a Low phase, and when
restored the full High period should be seen. During this
time LOCKED will stay High and remain High when the
clock is restored. If these conditions may not be met in the
design, apply a manual reset to the DLL after re-starting the
input clock, even if the LOCKED signal has not changed.
When the clock is stopped, one to four more clocks will still
be observed as the delay line is flushed. When the clock is
restarted, the output clocks will not be observed for one to
four clocks as the delay line is filled. The most common
case will be two or three clocks.
In a similar manner, a phase shift of the input clock is also
possible. The phase shift will propagate to the output one to
four clocks after the original shift, with no disruption to the
CLKDLL control.
Output Clocks
As mentioned earlier in the DLL pin descriptions, some
restrictions apply regarding the connectivity of the output
pins. The DLL clock outputs can drive an OBUF, a global
clock buffer BUFG, or route directly to destination clock
pins. The only BUFGs that the DLL clock outputs can drive
are the two on the same edge of the device (top or bottom).
One DLL output can drive more than one OBUF; however,
this adds skew.
Do not use the DLL output clock signals until after activation
of the LOCKED signal. Prior to the activation of the
LOCKED signal, the DLL output clocks are not valid and
can exhibit glitches, spikes, or other spurious movement.
Figure 27: Orientation of DLLs
DS001_27_061308
GCLKBUF1
DLL1
GCLKPAD1
GCLKBUF0
DLL0
GCLKPAD0
GCLKPAD2
DLL2
GCLKBUF2
GCLKPAD3
DLL3
GCLKBUF3
相關(guān)PDF資料
PDF描述
GBM06DRKN-S13 CONN EDGECARD 12POS .156 EXTEND
VI-21J-EU CONVERTER MOD DC/DC 36V 200W
LQG15HS56NJ02D INDUCTOR 56NH 200MA 0402
GBM06DRKH-S13 CONN EDGECARD 12POS .156 EXTEND
ADSP-BF531SBB400 IC DSP CTLR 16BIT 400MHZ 169-BGA
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
XC2S100-5FG456I 功能描述:IC FPGA 2.5V I-TEMP 456-FBGA RoHS:否 類(lèi)別:集成電路 (IC) >> 嵌入式 - FPGA(現(xiàn)場(chǎng)可編程門(mén)陣列) 系列:Spartan®-II 產(chǎn)品變化通告:XC4000(E,L) Discontinuation 01/April/2002 標(biāo)準(zhǔn)包裝:24 系列:XC4000E/X LAB/CLB數(shù):100 邏輯元件/單元數(shù):238 RAM 位總計(jì):3200 輸入/輸出數(shù):80 門(mén)數(shù):3000 電源電壓:4.5 V ~ 5.5 V 安裝類(lèi)型:表面貼裝 工作溫度:-40°C ~ 100°C 封裝/外殼:120-BCBGA 供應(yīng)商設(shè)備封裝:120-CPGA(34.55x34.55)
XC2S100-5FGG256C 功能描述:IC SPARTAN-II FPGA 100K 256-FBGA RoHS:是 類(lèi)別:集成電路 (IC) >> 嵌入式 - FPGA(現(xiàn)場(chǎng)可編程門(mén)陣列) 系列:Spartan®-II 標(biāo)準(zhǔn)包裝:40 系列:Spartan® 6 LX LAB/CLB數(shù):3411 邏輯元件/單元數(shù):43661 RAM 位總計(jì):2138112 輸入/輸出數(shù):358 門(mén)數(shù):- 電源電壓:1.14 V ~ 1.26 V 安裝類(lèi)型:表面貼裝 工作溫度:-40°C ~ 100°C 封裝/外殼:676-BGA 供應(yīng)商設(shè)備封裝:676-FBGA(27x27)
XC2S100-5FGG256I 功能描述:IC SPARTAN-II FPGA 100K 256-FBGA RoHS:是 類(lèi)別:集成電路 (IC) >> 嵌入式 - FPGA(現(xiàn)場(chǎng)可編程門(mén)陣列) 系列:Spartan®-II 標(biāo)準(zhǔn)包裝:40 系列:Spartan® 6 LX LAB/CLB數(shù):3411 邏輯元件/單元數(shù):43661 RAM 位總計(jì):2138112 輸入/輸出數(shù):358 門(mén)數(shù):- 電源電壓:1.14 V ~ 1.26 V 安裝類(lèi)型:表面貼裝 工作溫度:-40°C ~ 100°C 封裝/外殼:676-BGA 供應(yīng)商設(shè)備封裝:676-FBGA(27x27)
XC2S100-5FGG456C 制造商:XILINX 制造商全稱(chēng):XILINX 功能描述:Spartan-II FPGA Family
XC2S100-5FGG456I 制造商:XILINX 制造商全稱(chēng):XILINX 功能描述:Spartan-II FPGA Family