MOTOROLA
5-60
SINGLE-CHIP INTEGRATION MODULE 2
MC68HC16R1/916R1
USER’S MANUAL
5.8.4 Interrupt Processing Summary
A summary of the entire interrupt processing sequence follows. When the sequence
begins, a valid interrupt service request has been detected and is pending.
A. The CPU16 finishes higher priority exception processing or reaches an
instruction boundary.
B. Processor state is stacked, then the CCR PK extension field is cleared.
C. The interrupt acknowledge cycle begins:
1. FC[2:0] are driven to %111 (CPU space) encoding.
2. The address bus is driven as follows. ADDR[23:20] = %1111 ADDR[19:16]
= %1111, which indicates that the cycle is an interrupt acknowledge CPU
space cycle; ADDR[15:4] = %111111111111; ADDR[3:1] = the priority of
the interrupt request being acknowledged; and ADDR0 = %1.
3. Request priority is latched into the CCR IP field from the address bus.
D. Modules or external peripherals that have requested interrupt service decode
the priority value in ADDR[3:1]. If request priority is the same as acknowledged
priority, arbitration by IARB contention takes place.
E. After arbitration, the interrupt acknowledge cycle is completed in one of the fol-
lowing ways:
1. When there is no contention (IARB = %0000), the spurious interrupt monitor
asserts BERR, and the CPU16 generates the spurious interrupt vector
number.
2. The dominant interrupt source supplies a vector number and DSACK sig-
nals appropriate to the access. The CPU16 acquires the vector number.
3. The AVEC signal is asserted (the signal can be asserted by the dominant
interrupt source or the pin can be tied low), and the CPU16 generates an
autovector number corresponding to interrupt priority.
4. The bus monitor asserts BERR and the CPU16 generates the spurious
interrupt vector number.
F. The vector number is converted to a vector address.
G. The content of the vector address is loaded into the PC and the processor
transfers control to the exception handler routine.
5.8.5 Interrupt Acknowledge Bus Cycles
Interrupt acknowledge bus cycles are CPU space cycles that are generated during ex-
ception processing. For further information about the types of interrupt acknowledge
bus cycles determined by AVEC or DSACK, refer to
APPENDIX A ELECTRICAL
CHARACTERISTICS
and the SCIM Reference Manual(SCIMRM/AD).
5.9 Chip-Selects
Typical microcontrollers require additional hardware to provide external chip-select
signals. The MCU includes 12 programmable chip-select circuits that can provide from
2 to 16 clock-cycle access to external memory and peripherals. Address block sizes
of 2 Kbytes to 512 Kbytes can be selected. However, because ADDR[23:20] follow the
state of ADDR19, 512-Kbyte blocks are the largest usable size.
Figure 5-20
is a
diagram of a basic system that uses chip-selects.