參數(shù)資料
型號(hào): EVAL-AD7194EBZ
廠商: Analog Devices Inc
文件頁(yè)數(shù): 32/57頁(yè)
文件大?。?/td> 0K
描述: EVAL BOARD FOR AD7194
設(shè)計(jì)資源: EVAL-AD7zzzEBZ Schematic
AD7194 Gerber Files
標(biāo)準(zhǔn)包裝: 1
ADC 的數(shù)量: 1
位數(shù): 24
數(shù)據(jù)接口: DSP,MICROWIRE?,QSPI?,串行,SPI?
工作溫度: -40°C ~ 105°C
已用 IC / 零件: AD7194
已供物品: 板,線纜
Data Sheet
AD7194
Rev. A | Page 37 of 56
Following the one-point calibration, the internal temperature
sensor has an accuracy of ±2°C, typically.
LOGIC OUTPUTS
The AD7194 has four general-purpose digital outputs: P0, P1,
P2, and P3. These are enabled using the GP32EN and GP10EN
bits in the GPOCON register. The pins can be pulled high or
low using the P0DAT to P3DAT bits in the GPOCON register;
that is, the value at the pin is determined by the setting of the
P0DAT to P3DAT bits. The logic levels for these pins are
determined by AVDD rather than by DVDD. When the GPOCON
register is read, Bit P0DAT to Bit P3DAT reflect the actual value
at the pins; this is useful for short-circuit detection.
These pins can be used to drive external circuitry, for example,
an external multiplexer. If an external multiplexer is used to
increase the channel count, the multiplexer logic pins can be
controlled via the AD7194 general-purpose output pins. The
general-purpose output pins can be used to select the active
multiplexer pin. Because the operation of the multiplexer is
independent of the AD7194, the AD7194 modulator and filter
should be reset using the SYNC pin or by a write to the mode or
configuration register each time that the multiplexer channel is
changed.
CALIBRATION
The AD7194 provides four calibration modes that can be pro-
grammed via the mode bits in the mode register. These modes
are internal zero-scale calibration, internal full-scale calibration,
system zero-scale calibration, and system full-scale calibration.
A calibration can be performed at any time by setting the MD2
to MD0 bits in the mode register appropriately. A calibration
should be performed when the gain is changed. After each
conversion, the ADC conversion result is scaled using the ADC
calibration registers before being written to the data register.
The offset calibration coefficient is subtracted from the result
prior to multiplication by the full-scale coefficient.
To start a calibration, write the relevant value to the MD2
to MD0 bits. The DOUT/RDY pin and the RDY bit in the
status register go high when the calibration initiates. When
the calibration is complete, the contents of the corresponding
calibration registers are updated, the RDY bit in the status
register is reset, the DOUT/RDY pin returns low (if CS is low),
and the AD7194 reverts to idle mode.
During an internal zero-scale or full-scale calibration, the respec-
tive zero input and full-scale input are automatically connected
internally to the ADC input pins. A system calibration,
however, expects the system zero-scale and system full-scale
voltages to be applied to the ADC pins before initiating the
calibration mode. In this way, errors external to the ADC are
removed.
From an operational point of view, treat a calibration like
another ADC conversion. A zero-scale calibration, if required,
must always be performed before a full-scale calibration. Set the
system software to monitor the RDY bit in the status register or
the DOUT/RDY pin to determine the end of calibration via a
polling sequence or an interrupt-driven routine.
With chop disabled, both an internal zero-scale calibration and
a system zero-scale calibration require a time equal to the settling
time, tSETTLE (4/fADC for the sinc4 filter and 3/fADC for the sinc3
filter).
With chop enabled, an internal zero-scale calibration is not
needed because the ADC itself minimizes the offset continuously.
However, if an internal zero-scale calibration is performed, the
settling time, tSETTLE (2/fADC), is required to perform the calibra-
tion. Similarly, a system zero-scale calibration requires a time of
tSETTLE to complete.
To perform an internal full-scale calibration, a full-scale input
voltage is automatically connected to the selected analog input
for this calibration. For a gain of 1, the time required for an
internal full-scale calibration is equal to tSETTLE. For higher gains,
the internal full-scale calibration requires a time of 2 × tSETTLE.
A full-scale calibration is recommended each time the gain of a
channel is changed to minimize the full-scale error.
A system full-scale calibration requires a time of tSETTLE. With
chop disabled, the zero-scale calibration (internal or system
zero-scale) should be performed before the system full-scale
calibration is initiated.
相關(guān)PDF資料
PDF描述
ECC22DCMT-S288 CONN EDGECARD 44POS .100 EXTEND
0210490257 CABLE JUMPER 1.25MM .051M 20POS
ADR445ARMZ-REEL7 IC VREF SERIES PREC 5V 8-MSOP
RBC19DRYN-S13 CONN EDGECARD 38POS .100 EXTEND
HKQ0603S0N7C-T INDUCTOR HI FREQ 0.7NH 0201
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
EVAL-AD7195EBZ 功能描述:BOARD EVAL FOR AD7195 RoHS:是 類別:編程器,開發(fā)系統(tǒng) >> 評(píng)估演示板和套件 系列:- 標(biāo)準(zhǔn)包裝:1 系列:- 主要目的:電信,線路接口單元(LIU) 嵌入式:- 已用 IC / 零件:IDT82V2081 主要屬性:T1/J1/E1 LIU 次要屬性:- 已供物品:板,電源,線纜,CD 其它名稱:82EBV2081
EVAL-AD7262EDZ 功能描述:BOARD EVAL CONTROL AD7262 RoHS:是 類別:編程器,開發(fā)系統(tǒng) >> 評(píng)估板 - 模數(shù)轉(zhuǎn)換器 (ADC) 系列:- 產(chǎn)品培訓(xùn)模塊:Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:1 系列:- ADC 的數(shù)量:1 位數(shù):12 采樣率(每秒):94.4k 數(shù)據(jù)接口:USB 輸入范圍:±VREF/2 在以下條件下的電源(標(biāo)準(zhǔn)):- 工作溫度:-40°C ~ 85°C 已用 IC / 零件:MAX11645 已供物品:板,軟件
EVAL-AD7264EDZ 功能描述:BOARD EVALUATION FOR AD7264 RoHS:是 類別:編程器,開發(fā)系統(tǒng) >> 評(píng)估板 - 模數(shù)轉(zhuǎn)換器 (ADC) 系列:- 產(chǎn)品培訓(xùn)模塊:Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:1 系列:- ADC 的數(shù)量:1 位數(shù):12 采樣率(每秒):94.4k 數(shù)據(jù)接口:USB 輸入范圍:±VREF/2 在以下條件下的電源(標(biāo)準(zhǔn)):- 工作溫度:-40°C ~ 85°C 已用 IC / 零件:MAX11645 已供物品:板,軟件
EVAL-AD7265CB 制造商:AD 制造商全稱:Analog Devices 功能描述:Differential/Single-Ended Input, Dual 1 MSPS, 12-Bit, 3-Channel SAR ADC
EVAL-AD7265CB1 制造商:AD 制造商全稱:Analog Devices 功能描述:Differential Input, Dual 1 MSPS, 12-Bit, 3-Channel SAR ADC