參數(shù)資料
型號(hào): AM79C972BVIW
廠商: ADVANCED MICRO DEVICES INC
元件分類: 微控制器/微處理器
英文描述: PCnet⑩-FAST+ Enhanced 10/100 Mbps PCI Ethernet Controller with OnNow Support
中文描述: 5 CHANNEL(S), 100M bps, LOCAL AREA NETWORK CONTROLLER, PQFP176
封裝: TQFP-176
文件頁(yè)數(shù): 71/130頁(yè)
文件大?。?/td> 1580K
代理商: AM79C972BVIW
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)當(dāng)前第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)
Am79C972
71
bit is 0. After the RESET bit is cleared, then the normal
flow continues.
External Address Detection Interface
The EADI is provided to allow external address filtering
and to provide a Receive Frame Tag word for propri-
etary routing information. It is selected by setting the
EADISEL bit in BCR2 to 1. This feature is typically uti-
lized by terminal servers, bridges and/or router prod-
ucts. The EADI interface can be used in conjunction
with external logic to capture the packet destination ad-
dress from the serial bit stream as it arrives at the
Am79C972 controller, to compare the captured ad-
dress with a table of stored addresses or identifiers,
and then to determine whether or not the Am79C972
controller should accept the packet.
External Address Detection Interface: GPSI Port
The EADI interface outputs are delivered directly from
the NRZ decoded data and clock recovered by the ex-
ternal PHY. This allows the external address detection
to be performed in parallel with frame reception and ad-
dress comparison in the MAC Station Address Detec-
tion (SAD) block of the Am79C972 controller.
SRDCLK is provided to allow clocking of the receive bit
stream into the external address detection logic. Once
a received frame commences and data and clock are
available, the EADI logic will monitor the alternating
(
1,0
) preamble pattern until the two 1s of the Start
Frame Delimiter (SFD, 10101011 bit pattern) are de-
tected, at which point the SFBD output will be driven
HIGH.
The SFBD signal will initially be LOW. The assertion of
SFBD is a signal to the external address detection logic
that the SFD has been detected and that subsequent
SRDCLK cycles will deliver packet data to the external
logic. Therefore, when SFBD is asserted, the external
address matching logic should begin de-serialization of
the SRD data and send the resulting destination ad-
dress to a Content Addressable Memory (CAM) or
other address detection device. In order to reduce the
amount of logic external to the Am79C972 controller for
multiple address decoding systems, the SFBD signal
will toggle at each new byte boundary within the
packet, subsequent to the SFD. This eliminates the
need for externally supplying byte framing logic.
SRD is the decoded NRZ data from the network. This
signal can be used for external address detection.
The EAR pin should be driven LOW by the external ad-
dress comparison logic to reject a frame.
If an address match is detected by comparison with ei-
ther the Physical Address or Logical Address Filter reg-
isters contained within the Am79C972 controller or the
frame is of the type 'Broadcast', then the frame will be
accepted regardless of the condition of EAR. When the
EADISEL bit of BCR2 is set to 1 and the Am79C972
controller is programmed to promiscuous mode
(PROM bit of the Mode Register is set to 1), then all in-
coming frames will be accepted, regardless of any ac-
tivity on the EAR pin.
Internal address match is disabled when PROM
(CSR15, bit 15) is cleared to 0, DRCVBC (CSR15, bit
14) and DRCVPA (CSR15, bit 13) are set to 1, and the
Logical Address Filter registers (CSR8 to CSR11) are
programmed to all zeros.
When the EADISEL bit of BCR2 is set to 1 and internal
address match is disabled, then all incoming frames
will be accepted by the Am79C972 controller, unless
the EAR pin becomes active during the first 64 bytes of
the frame (excluding preamble and SFD). This allows
external address lookup logic approximately 58 byte
times after the last destination address bit is available
to generate the EAR signal, assuming that the
Am79C972 controller is not configured to accept runt
packets. The EADI logic only samples EAR from 2 bit
times after SFD until 512 bit times (64 bytes) after SFD.
The frame will be accepted if EAR has not been as-
serted during this window. In order for the EAR pin to
be functional in full-duplex mode, FDRPAD bit (BCR9,
bit 2) needs to be set. If Runt Packet Accept (CSR124,
bit 3) is enabled, then the EAR signal must be gener-
ated prior to the 8 bytes received, if frame rejection is
to be guaranteed. Runt packet sizes could be as short
as 12 byte times (assuming 6 bytes for source address,
2 bytes for length, no data, 4 bytes for FCS) after the
last bit of the destination address is available. EAR
must have a pulse width of at least 110 ns.
The EADI outputs continue to provide data throughout
the reception of a frame. This allows the external logic
to capture frame header information to determine pro-
tocol type, internetworking information, and other use-
ful data.
The EADI interface will operate as long as the STRT bit
in CSR0 is set, even if the receiver and/or transmitter
are disabled by software (DTX and DRX bits in CSR15
are set). This configuration is useful as a semi-power-
down mode in that the Am79C972 controller will not
perform any power-consuming DMA operations. How-
ever, external circuitry can still respond to
control
frames on the network to facilitate remote node control.
Table 8 summarizes the operation of the EADI inter-
face.
相關(guān)PDF資料
PDF描述
AM79C974 PCnetTM-SCSI Combination Ethernet and SCSI Controller for PCI Systems
AM79C974KCW PCnetTM-SCSI Combination Ethernet and SCSI Controller for PCI Systems
AM79C975 PCnet⑩-FAST III Single-Chip 10/100 Mbps PCI Ethernet Controller with Integrated PHY
AM79C973 PCnet⑩-FAST III Single-Chip 10/100 Mbps PCI Ethernet Controller with Integrated PHY
AM79C973KCW PCnet⑩-FAST III Single-Chip 10/100 Mbps PCI Ethernet Controller with Integrated PHY
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AM79C973 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:PCnet⑩-FAST III Single-Chip 10/100 Mbps PCI Ethernet Controller with Integrated PHY
AM79C973/75 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Board Layout Considerations for the Am79C973/75 Network Interface? - (PDF)
AM79C973/AM79C975 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:Am79C973/Am79C975 - PCnet-FAST III Single-Chip 10/100 Mbps PCI Ethernet Controller with Integrated PHY
AM79C973AVC\\W 制造商:Advanced Micro Devices 功能描述:
AM79C973AVC\W 制造商:Advanced Micro Devices 功能描述: