4
Preliminary Specifications
16 Mbit / 32 Mbit / 64 Mbit Multi-Purpose Flash Plus
SST39VF1601 / SST39VF3201 / SST39VF6401
SST39VF1602 / SST39VF3202 / SST39VF6402
2003 Silicon Storage Technology, Inc.
S71223-03-000
11/03
Data Protection
The SST39VF160x/320x/640x provide both hardware and
software features to protect nonvolatile data from inadvertent
writes.
Hardware Data Protection
Noise/Glitch Protection: A WE# or CE# pulse of less than 5
ns will not initiate a write cycle.
V
DD
Power Up/Down Detection: The Write operation is
inhibited when V
DD
is less than 1.5V.
Write Inhibit Mode: Forcing OE# low, CE# high, or WE#
high will inhibit the Write operation. This prevents inadvert-
ent writes during power-up or power-down.
Hardware Block Protection
The SST39VF1602/3202/6402 support top hardware block
protection, which protects the top 32 KWord block of the
device. The SST39VF1601/3201/6401 support bottom
hardware block protection, which protects the bottom 32
KWord block of the device. The Boot Block address ranges
are described in Table 2. Program and Erase operations
are prevented on the 32 KWord when WP# is low. If WP# is
left floating, it is internally held high via a pull-up resistor,
and the Boot Block is unprotected, enabling Program and
Erase operations on that block.
Hardware Reset (RST#)
The RST# pin provides a hardware method of resetting the
device to read array data. When the RST# pin is held low
for at least T
RP
any in-progress operation will terminate and
return to Read mode. When no internal Program/Erase
operation is in progress, a minimum period of T
RHR
is
required after RST# is driven high before a valid Read can
take place (see Figure 15).
The Erase or Program operation that has been interrupted
needs to be reinitiated after the device resumes normal
operation mode to ensure data integrity.
Software Data Protection (SDP)
The SST39VF160x/320x/640x provide the JEDEC
approved Software Data Protection scheme for all data
alteration operations, i.e., Program and Erase. Any Pro-
gram operation requires the inclusion of the three-byte
sequence. The three-byte load sequence is used to initiate
the Program operation, providing optimal protection from
inadvertent Write operations, e.g., during the system
power-up or power-down. Any Erase operation requires the
inclusion of six-byte sequence. These devices are shipped
with the Software Data Protection permanently enabled.
See Table 6 for the specific software command codes. Dur-
ing SDP command sequence, invalid commands will abort
the device to read mode within T
RC.
The contents of DQ
15
-
DQ
8
can be V
IL
or V
IH
, but no other value, during any SDP
command sequence.
Common Flash Memory Interface (CFI)
The SST39VF160x/320x/640x also contain the CFI infor-
mation to describe the characteristics of the device. In
order to enter the CFI Query mode, the system must write
three-byte sequence, same as product ID entry command
with 98H (CFI Query command) to address 5555H in the
last byte sequence. Once the device enters the CFI Query
mode, the system can read CFI data at the addresses
given in Tables 7 through 10. The system must write the
CFI Exit command to return to Read mode from the CFI
Query mode.
TABLE
2: B
OOT
B
LOCK
A
DDRESS
R
ANGES
Product
Bottom Boot Block
SST39VF1601/3201/6401
Top Boot Block
SST39VF1602
SST39VF3202
SST39VF6402
Address Range
000000H-007FFFH
0F8000H-0FFFFFH
1F8000H-1FFFFFH
3F8000H-3FFFFFH
T2.0 1223