XR16M2752
13
REV. 1.0.0
1.62V TO 3.63V HIGH PERFORMANCE DUART WITH 64-BYTE FIFO
2.11
Receiver
The receiver section contains an 8-bit Receive Shift Register (RSR) and 64 bytes of FIFO which includes a
byte-wide Receive Holding Register (RHR). The RSR uses the 16X/8X clock (EMSR bit-7) for timing. It verifies
and validates every bit on the incoming character in the middle of each data bit. On the falling edge of a start or
false start bit, an internal receiver counter starts counting at the 16X/8X clock rate. After 8 clocks (or 4 if 8X) the
start bit period should be at the center of the start bit. At this time the start bit is sampled and if it is still a logic
0 it is validated. Evaluating the start bit in this manner prevents the receiver from assembling a false character.
The rest of the data bits and stop bits are sampled and validated in this same manner to prevent false framing.
If there were any error(s), they are reported in the LSR register bits 2-4. Upon unloading the receive data byte
from RHR, the receive FIFO pointer is bumped and the error tags are immediately updated to reflect the status
of the data byte in RHR register. RHR can generate a receive data ready interrupt upon receiving a character
or delay until it reaches the FIFO trigger level. Furthermore, data delivery to the host is guaranteed by a
receive data ready time-out interrupt when data is not received for 4 word lengths as defined by LCR[1:0] plus
12 bits time. This is equivalent to 3.7-4.6 character times. The RHR interrupt is enabled by IER bit-0.
2.11.1
Receive Holding Register (RHR) - Read-Only
The Receive Holding Register is an 8-bit register that holds a receive data byte from the Receive Shift
Register. It provides the receive data interface to the host processor. The RHR register is part of the receive
FIFO of 64 bytes by 11-bits wide, the 3 extra bits are for the 3 error tags to be reported in LSR register. When
the FIFO is enabled by FCR bit-0, the RHR contains the first data character received by the FIFO. After the
RHR is read, the next character byte is loaded into the RHR and the errors associated with the current data
byte are immediately updated in the LSR bits 2-4.
FIGURE 7. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE
Transm it Data Shift Register
(TSR)
Transm it
Data Byte
THR Interrupt (ISR bit-1) falls
below the program m ed Trigger
Level and then when becom es
em pty. FIFO is Enabled by FCR
bit-0=1
Transm it
FIFO
16X or 8X Clock
(EM SR bit-7)
Auto CTS Flow Control (CTS# pin)
Auto Software Flow Control
Flow Control Characters
(Xoff1/2 and Xon1/2 Reg.
TXF IF O 1