參數(shù)資料
型號(hào): ST72P63BH4T1
廠商: STMICROELECTRONICS
元件分類: 微控制器/微處理器
英文描述: 8-BIT, MROM, 8 MHz, MICROCONTROLLER, PQFP48
封裝: 7 X 7 MM, ROHS COMPLIANT, LQFP-48
文件頁數(shù): 134/145頁
文件大小: 2984K
代理商: ST72P63BH4T1
ST7263BDx ST7263BHx ST7263BKx ST7263BE
89/145
IC bus interface (Cont’d)
12.5.4.2 Master mode
To switch from default Slave mode to Master
mode, a Start condition generation is needed.
Start condition
Setting the START bit while the BUSY bit is
cleared causes the interface to switch to Master
mode (M/SL bit set) and generates a Start condi-
tion.
Once the Start condition is sent:
– The EVF and SB bits are set by hardware with
an interrupt if the ITE bit is set.
Then the master waits for a read of the SR1 regis-
ter followed by a write in the DR register with the
Slave address byte, holding the SCL line low
(see Figure 45 Transfer sequencing EV5).
Slave address transmission
Then the slave address byte is sent to the SDA
line via the internal shift register.
After completion of this transfer (and acknowledge
from the slave if the ACK bit is set):
– The EVF bit is set by hardware with interrupt
generation if the ITE bit is set.
Then the master waits for a read of the SR1 regis-
ter followed by a write in the CR register (for exam-
ple set PE bit), holding the SCL line low (see Fig-
ure 45 Transfer sequencing EV6).
Next the master must enter Receiver or Transmit-
ter mode.
Master receiver
Following the address transmission and after the
SR1 and CR registers have been accessed, the
master receives bytes from the SDA line into the
DR register via the internal shift register. After
each byte the interface generates in sequence:
– Acknowledge pulse if the ACK bit is set
– EVF and BTF bits are set by hardware with an in-
terrupt if the ITE bit is set.
Then the interface waits for a read of the SR1 reg-
ister followed by a read of the DR register, holding
the SCL line low (see Figure 45 Transfer se-
quencing EV7).
To close the communication: before reading the
last byte from the DR register, set the STOP bit to
generate the Stop condition. The interface goes
automatically back to slave mode (M/SL bit
cleared).
Note: In order to generate the non-acknowledge
pulse after the last received data byte, the ACK bit
must be cleared just before reading the second
last data byte.
Master transmitter
Following the address transmission and after SR1
register has been read, the master sends bytes
from the DR register to the SDA line via the inter-
nal shift register.
The master waits for a read of the SR1 register fol-
lowed by a write in the DR register, holding the
SCL line low (see Figure 45 Transfer sequencing
EV8).
When the acknowledge bit is received, the
interface sets:
– EVF and BTF bits with an interrupt if the ITE bit
is set.
To close the communication: after writing the last
byte to the DR register, set the STOP bit to gener-
ate the Stop condition. The interface goes auto-
matically back to slave mode (M/SL bit cleared).
Error cases
– BERR: Detection of a Stop or a Start condition
during a byte transfer. In this case, the EVF and
BERR bits are set by hardware with an interrupt
if ITE is set.
Note that BERR will not be set if an error is de-
tected during the first or second pulse of each 9-
bit transaction:
Single Master mode
If a Start or Stop is issued during the first or sec-
ond pulse of a 9-bit transaction, the BERR flag
will not be set and transfer will continue however
the BUSY flag will be reset. To work around this,
slave devices should issue a NACK when they
receive a misplaced Start or Stop. The reception
of a NACK or BUSY by the master in the middle
of communication gives the possibility to reiniti-
ate transmission.
Multimaster mode
Normally the BERR bit would be set whenever
unauthorized transmission takes place while
transfer is already in progress. However, an is-
sue will arise if an external master generates an
unauthorized Start or Stop while the I2C master
is on the first or second pulse of a 9-bit transac-
tion. It is possible to work around this by polling
the BUSY bit during I2C master mode transmis-
相關(guān)PDF資料
PDF描述
STF-H240IYD T-1 DUAL COLOR LED ARRAY, RED/YELLOW, 3 mm
STM32F103CBT6 32-BIT, FLASH, 72 MHz, RISC MICROCONTROLLER, PQFP48
STM32F103R8T7TR 32-BIT, FLASH, 1.25 MHz, RISC MICROCONTROLLER, PQFP64
STM32W108HBU7 SPECIALTY MICROPROCESSOR CIRCUIT, QCC40
STP506C-2IW-012V SINGLE COLOR DISPLAY CLUSTER, WHITE, 152.4 mm
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
ST72T101G1B6 功能描述:8位微控制器 -MCU OTP EPROM 4K SPI RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時(shí)鐘頻率:50 MHz 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT
ST72T101G1M6 功能描述:8位微控制器 -MCU OTP EPROM 4K SPI RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時(shí)鐘頻率:50 MHz 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT
ST72T101G2B6 功能描述:8位微控制器 -MCU OTP EPROM 8K SPI RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時(shí)鐘頻率:50 MHz 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT
ST72T101G2M6 功能描述:8位微控制器 -MCU RO 511-ST72C104G2M6 RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時(shí)鐘頻率:50 MHz 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT
ST72T121J2B6 功能描述:8位微控制器 -MCU OTP EPROM 8K SPI/SCI RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時(shí)鐘頻率:50 MHz 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT