Philips Semiconductors
Preliminary specification
80C554/83C554/87C554
80C51 8-bit microcontroller – 6 clock operation
16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I
2
C, PWM,
capture/compare, high I/O, 64L LQFP
2000 Nov 10
64
DC ELECTRICAL CHARACTERISTICS
(Continued)
V
DD
and T
amb
minimum and maximum, per device specifications table.
TEST
LIMITS
SYMBOL
PARAMETER
CONDITIONS
MIN
MAX
UNIT
Analog Inputs (Continued)
AV
IN
AV
REF
Analog input voltage
AV
SS
–0.2
AV
DD
+0.2
V
Reference voltage:
AV
REF–
AV
REF+
Resistance between AV
REF+
and AV
REF–
Analog input capacitance
AV
SS
–0.2
V
V
AV
DD
+0.2
50
R
REF
C
IA
t
ADS
t
ADS8
t
ADC
t
ADC8
DL
e
IL
e
IL
e8
OS
e
OS
e8
G
e
A
e
M
CTC
C
t
NOTES FOR DC ELECTRICAL CHARACTERISTICS:
1. See Figures 57 through 61 for I
DD
test conditions.
2. The operating supply current is measured with all output pins disconnected; XTAL1 driven with t
r
= t
f
= 10 ns; V
IL
= V
SS
+ 0.5 V;
V
IH
= V
DD
– 0.5 V; XTAL2 not connected; EA = RST = Port 0 = EW = V
DD
; STADC = V
SS
.
3. The idle mode supply current is measured with all output pins disconnected; XTAL1 driven with t
r
= t
f
= 10 ns; V
IL
= V
SS
+ 0.5 V;
V
IH
= V
DD
– 0.5 V; XTAL2 not connected; Port 0 = EW = V
DD
; EA = RST = STADC = V
SS
.
4. The power-down current is measured with all output pins disconnected; XTAL2 not connected; Port 0 = EW = V
DD
;
EA = RST = STADC = XTAL1 = V
SS
.
5. The input threshold voltage of P1.6 and P1.7 (SIO1) meets the I
2
C specification, so an input voltage below 1.5 V will be recognized as a
logic 0 while an input voltage above 3.0 V will be recognized as a logic 1.
6. Pins of ports 1 (except P1.6, P1.7), 2, 3, and 4 source a transition current when they are being externally driven from 1 to 0. The transition
current reaches its maximum value when V
is approximately 2 V.
7. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V
OL
s of ALE and ports 1 and 3. The noise is due
to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the
worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I
OL
can exceed these conditions provided that no
single output sinks more than 5 mA and no more than two outputs exceed the test conditions.
8. Capacitive loading on ports 0 and 2 may cause the V
OH
on ALE and PSEN to momentarily fall below the 0.9 V
DD
specification when the
address bits are stabilizing.
9. The following condition must not be exceeded: V
DD
– 0.2 V < AV
DD
< V
DD
+ 0.2 V.
10.Conditions: AV
REF–
= 0 V; AV
DD
= 5.0 V. Measurement by continuous conversion of AV
IN
= –20 mV to 5.12 V in steps of 0.5 mV, deriving
parameters from collected conversion results of ADC. AV
REF+
(87C554) = 5.12 V. ADC is monotonic with no missing codes.
11. The differential non-linearity (DL
e
) is the difference between the actual step width and the ideal step width. (See Figure 48.)
12.The ADC is monotonic; there are no missing codes.
13.The integral non-linearity (IL
e
) is the peak difference between the center of the steps of the actual and the ideal transfer curve after
appropriate adjustment of gain and offset error. (See Figure 48.)
14.The offset error (OS
) is the absolute difference between the straight line which fits the actual transfer curve (after removing gain error), and
a straight line which fits the ideal transfer curve. (See Figure 48.)
15.The gain error (G
) is the relative difference in percent between the straight line fitting the actual transfer curve (after removing offset error),
and the straight line which fits the ideal transfer curve. Gain error is constant at every point on the transfer curve. (See Figure 48.)
16.The absolute voltage error (A
e
) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated
ADC and the ideal transfer curve.
17.This should be considered when both analog and digital signals are simultaneously input to port 5.
18.This parameter is guaranteed by design and characterized, but is not production tested.
10
k
15
pF
Sampling time (10 bit mode)
8t
CY
5t
CY
50t
CY
24t
CY
±
1
±
2
±
1
±
2
±
1
±
0.4
±
3
±
1
μ
s
μ
s
μ
s
μ
s
Sampling time (8 bit mode)
Conversion time (including sampling time, 10 bit mode)
Conversion time (including sampling time, 8 bit mode)
Differential non-linearity
10, 11, 12
Integral non-linearity
10, 13
(10 bit mode)
LSB
LSB
Integral non-linearity (8 bit mode)
Offset error
10, 14
(10 bit mode)
LSB
LSB
Offset error (8 bit mode)
Gain error
10, 15
Absolute voltage error
10, 16
LSB
%
LSB
Channel to channel matching
Crosstalk
between inputs of port 5
17, 18
LSB
0–100 kHz
–60
dB