參數(shù)資料
型號(hào): LTC1966MPMS8#TRPBF
廠商: Linear Technology
文件頁(yè)數(shù): 22/38頁(yè)
文件大?。?/td> 391K
描述: IC RMS/DC CONV MICROPWR 8-MSOP
標(biāo)準(zhǔn)包裝: 2,500
電流 - 電源: 155µA
電源電壓: 2.7 V ~ 5.5 V
安裝類型: 表面貼裝
封裝/外殼: 8-TSSOP,8-MSOP(0.118",3.00mm 寬)
供應(yīng)商設(shè)備封裝: 8-MSOP
包裝: 帶卷 (TR)
LTC1966
22
1966fb
applicaTions inForMaTion
using the same design curves presented in Figures 6, 8,
17 and 18. For the worst-case of square top pulse trains,
that are always either zero volts or the peak voltage, base
the selection on the lowest fundamental input frequency
divided by twice as much:
 
f
f
CF
DESIGN
INPUTMIN
=
(  )
"  
6
2
The effects of crest factor and DC offsets are cumulative.
So for example, a 10% duty cycle pulse train from 0V
PEAK
 
to 1V
PEAK
 (CF = 10 = 3.16) repeating at 16.67ms (60Hz)
input is effectively only 30Hz due to the DC asymmetry
and is effectively only:
 
f
Hz
DESIGN
=
=
30
6  316  2
378
"  . 
.
for the purposes of Figures 6, 8, 17 and 18.
Obviously, the effect of crest factor is somewhat simplified
above given the factor of 2 difference based on a subjec-
tive description of the waveform type. The results will vary
somewhat based on actual crest factor and waveform
dynamics and the type of filtering used. The above method
is conservative for some cases and about right for others.
The LTC1966 works well with signals whose crest factor is
4 or less. At higher crest factors, the internal  modulator
will saturate, and results will vary depending on the exact
frequency, shape and (to a lesser extent) amplitude of the
input waveform. The output voltage could be higher or
lower than the actual RMS of the input signal.
The  modulator may also saturate when signals with crest
factors less than 4 are used with insufficient averaging.
This will only occur when the output droops to less than
1/4 of the input voltage peak. For instance, a DC-coupled
pulse train with a crest factor of 4 has a duty cycle of
6.25% and a 1V
PEAK
 input is 250mV
RMS
. If this input is
50Hz, repeating every 20ms, and C
AVE
 = 1礔, the output
will droop during the inactive 93.75% of the waveform.
This droop is calculated as:
 
V
V
e
MIN
RMS
INACTIVETIME
=
?/DIV>
?/DIV>
?/DIV>
?/DIV>
?/DIV>
?/DIV>
?/DIV>
?/DIV>

?/DIV>
?/DIV>
?/DIV>
?/DIV>
?/DIV>
?/DIV>
2
1
2 " Z  " C
OUT  AVE
For the LTC1966, whose output impedance (Z
OUT
) is 85k?
this droop works out to 5.22%, so the output would be
reduced to 237mV at the end of the inactive portion of the
input. When the input signal again climbs to 1V
PEAK
, the
peak/output ratio is 4.22.
With C
AVE
 = 10礔, the droop is only 0.548% to 248.6mV
and the peak/output ratio is just 4.022, which the LTC1966
has enough margin to handle without error.
For crest factors less than 3.5, the selection of C
AVE
 as
previously described should be sufficient to avoid this
droop and modulator saturation effect. But with crest
factors above 3.5, the droop should also be checked for
each design.
Error Analyses
Once the RMS-to-DC conversion circuit is working, it is
time to take a step back and do an analysis of the accuracy
of that conversion. The LTC1966 specifications include
three basic static error terms, V
OOS
, V
IOS
 and GAIN. The
output offset is an error that simply adds to (or subtracts
from) the voltage at the output. The conversion gain of
the LTC1966 is nominally 1.000 V
DCOUT
/V
RMSIN
 and the
gain error reflects the extent to which this conversion gain
is not perfectly unity. Both of these affect the results in a
fairly obvious way.
Input offset on the other hand, despite its conceptual
simplicity, effects the output in a nonobvious way. As
its name implies, it is a constant error voltage that adds
directly with the input. And it is the sum of the input and
V
IOS
 that is RMS converted.
This means that the effect of V
IOS
 is warped by the
nonlinear RMS conversion. With 0.2mV (typ) V
IOS
, and
a 200mV
RMS
 AC input, the RMS calculation will add the
DC and AC terms in an RMS fashion and the effect is
negligible:
V
OUT
  = (200mV AC)
2
 + (0.2mV DC)
2
 
   = 200.0001mV    
   = 200mV + 1/2ppm
相關(guān)PDF資料
PDF描述
LTC1967IMS8#TRPBF IC CONVERTER RMS-DC PREC 8MSOP
LTC1968IMS8#TRPBF IC CONVERTER RMS-DC PREC 8MSOP
LTC3100EUD#TRPBF IC REG BUCK/BOOST/LINEAR 16-QFN
LTC3104IMSE#TRPBF IC REG DL BCK/LINEAR SYNC 16MSOP
LTC3445EUF#TRPBF IC REG TRPL BUCK/LINEAR 24-QFN
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LTC1967CMS8 功能描述:IC CONVERTER RMS-DC PREC 8MSOP RoHS:否 類別:集成電路 (IC) >> PMIC - RMS 至 DC 轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:46 系列:- 電流 - 電源:1.2mA 電源電壓:±18 V,36 V 安裝類型:表面貼裝 封裝/外殼:16-SOIC(0.295",7.50mm 寬) 供應(yīng)商設(shè)備封裝:16-SOIC W 包裝:管件
LTC1967CMS8#PBF 功能描述:IC CONVERTER RMS-DC PREC 8MSOP RoHS:否 類別:集成電路 (IC) >> PMIC - RMS 至 DC 轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:46 系列:- 電流 - 電源:1.2mA 電源電壓:±18 V,36 V 安裝類型:表面貼裝 封裝/外殼:16-SOIC(0.295",7.50mm 寬) 供應(yīng)商設(shè)備封裝:16-SOIC W 包裝:管件
LTC1967CMS8#TR 功能描述:IC CONVERTER RMS-DC PREC 8MSOP RoHS:否 類別:集成電路 (IC) >> PMIC - RMS 至 DC 轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:46 系列:- 電流 - 電源:1.2mA 電源電壓:±18 V,36 V 安裝類型:表面貼裝 封裝/外殼:16-SOIC(0.295",7.50mm 寬) 供應(yīng)商設(shè)備封裝:16-SOIC W 包裝:管件
LTC1967CMS8#TRPBF 功能描述:IC CONVERTER RMS-DC PREC 8MSOP RoHS:是 類別:集成電路 (IC) >> PMIC - RMS 至 DC 轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:46 系列:- 電流 - 電源:1.2mA 電源電壓:±18 V,36 V 安裝類型:表面貼裝 封裝/外殼:16-SOIC(0.295",7.50mm 寬) 供應(yīng)商設(shè)備封裝:16-SOIC W 包裝:管件
LTC1967CMS8PBF 制造商:Linear Technology 功能描述:RMS-DC converter, LTC1967 40kHz MSOP