參數(shù)資料
型號: EVAL-CN0217-EB1Z
廠商: Analog Devices Inc
文件頁數(shù): 13/40頁
文件大?。?/td> 0K
描述: EVAL BOARD FOR CN0217
設(shè)計資源: CN-0217 Circuit Eval Board
標(biāo)準(zhǔn)包裝: 1
系列: Circuits from the Lab™
主要目的: 阻抗轉(zhuǎn)換器
已用 IC / 零件: AD5933,AD5934,AD8606
主要屬性: 網(wǎng)絡(luò)分析器
次要屬性: I²C 接口
已供物品:
AD5933
Data Sheet
Rev. E | Page 20 of 40
new phase (including the phase due to the impedance) using
the same formula. The phase of the unknown impedance (Z)
is given by the following formula:
)
(
system
unknown
Z
Φ
=
where:
system
is the phase of the system with a calibration resistor
connected between VIN and VOUT.
Φunknown is the phase of the system with the unknown
impedance connected between VIN and VOUT.
Z is the phase due to the impedance, that is, the impedance
phase.
Note that it is possible to calculate the gain factor and to
calibrate the system phase using the same real and imaginary
component values when a resistor is connected between the
VOUT and VIN pins of the AD5933, for example, measuring
the impedance phase (Z) of a capacitor.
The excitation signal current leads the excitation signal voltage
across a capacitor by 90 degrees. Therefore, an approximate
90 degree phase difference exists between the system phase
responses measured with a resistor and that of the system phase
responses measured with a capacitive impedance.
As previously outlined, if the user would like to determine the
phase angle of capacitive impedance (Z), the user first has to
determine the system phase response ( system
) and subtract
this from the phase calculated with the capacitor connected
between VOUT and VIN (Φunknown).
A plot showing the AD5933 system phase response calculated
using a 220 kΩ calibration resistor (RFB = 220 kΩ, PGA = ×1)
and the repeated phase measurement with a 10 pF capacitive
impedance is shown in Figure 26.
One important point to note about the phase formula used to
plot Figure 26 is that it uses the arctangent function that returns
a phase angle in radians and, therefore, it is necessary to convert
from radians to degrees.
200
180
160
140
120
100
80
60
40
20
0
15k
30k
45k
60k
75k
90k
105k
120k
FREQUENCY (Hz)
SYST
EM
PH
A
SE
(D
e
g
re
e
s
)
05324-
032
220k RESISTOR
10pF CAPACITOR
Figure 26. System Phase Response vs. Capacitive Phase
The phase difference (that is, Z) between the phase response
of a capacitor and the system phase response using a resistor is
the impedance phase of the capacitor, Z (see Figure 27).
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
15k
30k
45k
60k
75k
90k
105k
120k
FREQUENCY (Hz)
P
HAS
E
(
Deg
rees)
05324-
033
Figure 27. Phase Response of a Capacitor
Also when using the real and imaginary values to interpret
the phase at each measurement point, take care when using
the arctangent formula. The arctangent function returns the
correct standard phase angle only when the sign of the real and
imaginary values are positive, that is, when the coordinates lie
in the first quadrant. The standard angle is the angle taken
counterclockwise from the positive real x-axis. If the sign of the
real component is positive and the sign of the imaginary
component is negative, that is, the data lies in the second
quadrant, then the arctangent formula returns a negative angle
and it is necessary to add a further 180 degrees to calculate the
correct standard angle. Likewise, when the real and imaginary
components are both negative, that is, when the coordinates lie
in the third quadrant, then the arctangent formula returns a
positive angle and it is necessary to add 180 degrees from the
angle to return the correct standard phase. Finally, when the
real component is positive and the imaginary component is
negative, that is, the data lies in the fourth quadrant, then the
arctangent formula returns a negative angle. It is necessary to
add 360 degrees to the angle to calculate the correct phase
angle.
Therefore, the correct standard phase angle is dependent upon
the sign of the real and imaginary component and is summa-
rized in Table 7.
相關(guān)PDF資料
PDF描述
V375C48T75BF3 CONVERTER MOD DC/DC 48V 75W
HBC12DRTF-S13 CONN EDGECARD 24POS .100 EXTEND
HCC13DREN-S13 CONN EDGECARD 26POS .100 EXTEND
V375C48E150BG2 CONVERTER MOD DC/DC 48V 150W
V375C48E150BF CONVERTER MOD DC/DC 48V 150W
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
EVAL-CN0218-SDPZ 功能描述:BOARD CFTL AD8212 RoHS:是 類別:編程器,開發(fā)系統(tǒng) >> 評估演示板和套件 系列:Circuits from the Lab™ 標(biāo)準(zhǔn)包裝:1 系列:- 主要目的:電信,線路接口單元(LIU) 嵌入式:- 已用 IC / 零件:IDT82V2081 主要屬性:T1/J1/E1 LIU 次要屬性:- 已供物品:板,電源,線纜,CD 其它名稱:82EBV2081
EVAL-CN0221-EB1Z 功能描述:EVAL MONITOR W/ADUCM360 UCTRL RoHS:否 類別:編程器,開發(fā)系統(tǒng) >> 通用嵌入式開發(fā)板和套件(MCU、DSP、FPGA、CPLD等) 系列:* 標(biāo)準(zhǔn)包裝:1 系列:PICDEM™ 類型:MCU 適用于相關(guān)產(chǎn)品:PIC10F206,PIC16F690,PIC16F819 所含物品:板,線纜,元件,CD,PICkit 編程器 產(chǎn)品目錄頁面:659 (CN2011-ZH PDF)
EVAL-CN0225-SDPZ 功能描述:其他開發(fā)工具 EVAL-CN0225-SDPZ RoHS:否 制造商:Parallax 產(chǎn)品:ELEV-8 Hex Upgrade Kits 類型:Robotics 工具用于評估:ELEV-8 Quadcopter 工作電源電壓:
EVAL-CN0227-HSCZ 制造商:Analog Devices 功能描述:HIGH PERFORMANCE WIDEBAND RECEIVER - Boxed Product (Development Kits) 制造商:Analog Devices 功能描述:BOARD EVAL WIDEBAND RECEIVER 制造商:Analog Devices 功能描述:EVAL BOARD CFTL WIDEBAND REC 制造商:Analog Devices 功能描述:EVAL BOARD, CFTL, WIDEBAND RECEIVER 制造商:Analog Devices 功能描述:EVAL BOARD, 16BIT 250MSPS WIDEBAND RECEIVER; Silicon Manufacturer:Analog Devices; Silicon Core Number:ADL5562, AD9467; Kit Application Type:Communication; Application Sub Type:IF Receiver
EVAL-CN0229-SDPZ 功能描述:EVAL-CN0229-SDPZ RoHS:否 類別:編程器,開發(fā)系統(tǒng) >> 評估演示板和套件 系列:* 標(biāo)準(zhǔn)包裝:1 系列:- 主要目的:電信,線路接口單元(LIU) 嵌入式:- 已用 IC / 零件:IDT82V2081 主要屬性:T1/J1/E1 LIU 次要屬性:- 已供物品:板,電源,線纜,CD 其它名稱:82EBV2081