參數(shù)資料
型號(hào): CR16HCT5
文件頁(yè)數(shù): 93/157頁(yè)
文件大?。?/td> 1256K
代理商: CR16HCT5
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)當(dāng)前第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)
93
www.national.com
Special error handling for the TEC counter is performed in
the following situations:
— A stuff error occurs during arbitration, when a transmit-
ted ‘recessive’ stuff bit is received as a ‘dominant’ bit.
This does not lead to an increment of the TEC.
— An ACK-error occurs in an error passive device and no
‘dominant’ bits are detected while sending the passive
error flag. This does not lead to an increment of the
TEC.
— If only one device is on the bus and this device trans-
mits a message, it will get no acknowledgment. This
will be detected as an error and the message will be re-
peated. When the device goes ‘error passive’ and de-
tects an acknowledge error, the TEC counter is not
incremented. Therefore the device will not go from ‘er-
ror passive’ to the ‘bus off’ state due to such a condi-
tion.
20.2.3
In the Bit Time Logic (BTL), the CAN bus speed and the Syn-
chronization Jump Width can be configured by the user.
CR16CAN divides a nominal bit time into three time seg-
ments: synchronization segment, time segment 1 (TSEG1)
and time segment 2 (TSEG2). Figure 52 shows the various
elements of a CAN bit time.
Bit Time Logic
CAN Bit Time
The number of time quanta in a CAN bit (CAN Bit Time) lies
between 4 and 25. The sample point is positioned between
TSEG1 and TSEG2 and the transmission point is positioned
at the end of TSEG2.
The
time segment 1
includes the propagation segment and
the phase segment 1 as specified in the CAN specification
2.0.B. The length of the time segment 1 in time quantas (tq)
is defined by the TSEG1[3:0] bits.
The
time segment 2
represents the phase segment 2 as
specified in the CAN specification 2.0.B. The length of the
time segment 2 in time quantas (tq) is defined by the
TSEG2[3:0] bits.
The
Synchronization Jump Width
(SJW) defines the max-
imum number of time quanta (tq) by which a received CAN
bit can be shortened or lengthened in order to achieve re-
synchronization on ‘recessive’ to ‘dominant’ data transitions
on the bus. In the CR16CAN implementation the SJW has to
be configured less or equal to TSEG1 or TSEG2, whatever is
smaller.
Synchronization
A CAN device expects the transition of the data signal to be
within the synchronization segment of each CAN bit time.
This segment has the fixed length of one time quantum.
However, two CAN nodes never operate at exactly the same
clock rate and furthermore the bus signal may deviate from
the ideal waveform due to the physical conditions of the net-
work (bus length and load). In order to compensate for the
various delays within a network, the sample point can be po-
sitioned by programming the length of time segments 1 and
2 (see Figure 52).
In addition to that, two types of synchronization are support-
ed. The BTL logic compares the incoming edge of a CAN bit
with the internal bit timing. The internal bit timing can be
adapted by either hard or soft synchronization (re-synchroni-
zation).
Hard synchronization
is done at the beginning of a new
frame with the falling edge on the bus while the bus is idle.
This is interpreted as the SOF. It restarts the internal logic.
Soft synchronization
is used during the reception of a bit
stream to lengthen or shorten the internal bit time. Depend-
ing on the phase error (e), the time segment 1 may be in-
creased or the time segment 2 may be decreased by a
specific value, the re-synchronization jump width (SJW).
The phase error is given by the deviation of the edge to the
SYNC segment, measured in CAN clocks. The value of the
phase error is defined as:
e = 0, if the edge occurs within the SYNC segment.
e > 0, if the edge occurs within TSEG1
e < 0, if the edge occurs within TSEG2 of the previous bit.
ONE TIME QUANTUM
INTERNAL
TIME QUANTA
CLOCK
A
TIME SEGMENT 1 (TSEG1)
TIME SEGMENT 2 (TSEG2)
1 tq
2 to 16 tq
1 to 8 tq
SAMPLE
POINT
A = synchronization segment (Sync)
Figure 52.
Bit Timing
4 to 25 tq
TRANSMISSION
POINT
相關(guān)PDF資料
PDF描述
CR16HCT5VJE7Y Microcontroller
CR16HCT5VJE8Y Microcontroller
CR16HCT5VJE9Y Microcontroller
CR16HCT9
CR16HCT9VJE7 Microcontroller
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
CR16HCT5VJE7Y 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Microcontroller
CR16HCT5VJE8Y 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Microcontroller
CR16HCT5VJE9Y 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Microcontroller
CR16HCT5VJEXY 制造商:NSC 制造商全稱:National Semiconductor 功能描述:CR16MCT9/CR16MCT5/CR16HCT9/CR16HCT5 16-Bit Reprogrammable/ROM Microcontroller
CR16HCT9 制造商:NSC 制造商全稱:National Semiconductor 功能描述:CR16MCT9/CR16MCT5/CR16HCT9/CR16HCT5 16-Bit Reprogrammable/ROM Microcontroller