參數(shù)資料
型號(hào): ATTINY13V-10SSUR
廠商: Atmel
文件頁數(shù): 38/176頁
文件大?。?/td> 0K
描述: MCU AVR 1KB FLASH 10MHZ 8SOIC
產(chǎn)品培訓(xùn)模塊: tinyAVR Introduction
標(biāo)準(zhǔn)包裝: 4,000
系列: AVR® ATtiny
核心處理器: AVR
芯體尺寸: 8-位
速度: 10MHz
外圍設(shè)備: 欠壓檢測(cè)/復(fù)位,POR,PWM,WDT
輸入/輸出數(shù): 6
程序存儲(chǔ)器容量: 1KB(512 x 16)
程序存儲(chǔ)器類型: 閃存
EEPROM 大?。?/td> 64 x 8
RAM 容量: 64 x 8
電壓 - 電源 (Vcc/Vdd): 1.8 V ~ 5.5 V
數(shù)據(jù)轉(zhuǎn)換器: A/D 4x10b
振蕩器型: 內(nèi)部
工作溫度: -40°C ~ 85°C
封裝/外殼: 8-SOIC(0.154",3.90mm 寬)
包裝: 帶卷 (TR)
其它名稱: ATTINY13V-10SSUR-ND
ATTINY13V-10SSURTR
PIC16(L)F720/721
DS41430C-page 132
Preliminary
2010-2011 Microchip Technology Inc.
16.3
AUSART Synchronous Mode
Synchronous serial communications are typically used
in systems with a single master and one or more
slaves. The master device contains the necessary cir-
cuitry for baud rate generation and supplies the clock
for all devices in the system. Slave devices can take
advantage of the master clock by eliminating the
internal clock generation circuitry.
There are two signal lines in Synchronous mode: a
bidirectional data line and a clock line. Slaves use the
external clock supplied by the master to shift the serial
data into and out of their respective receive and trans-
mit shift registers. Since the data line is bidirectional,
synchronous operation is half-duplex only. Half-duplex
refers to the fact that master and slave devices can
receive and transmit data but not both simultaneously.
The AUSART can operate as either a master or slave
device.
Start and Stop bits are not used in synchronous
transmissions.
16.3.1
SYNCHRONOUS MASTER MODE
The following bits are used to configure the AUSART
for Synchronous Master operation:
SYNC = 1
CSRC = 1
SREN = 0 (for transmit); SREN = 1 (for receive)
CREN = 0 (for transmit); CREN = 1 (for receive)
SPEN = 1
Setting the SYNC bit of the TXSTA register configures
the device for synchronous operation. Setting the CSRC
bit of the TXSTA register configures the device as a
master. Clearing the SREN and CREN bits of the RCSTA
register ensures that the device is in the Transmit mode,
otherwise the device will be configured to receive. Setting
the SPEN bit of the RCSTA register enables the
AUSART.
16.3.1.1
Master Clock
Synchronous data transfers use a separate clock line,
which is synchronous with the data. A device config-
ured as a master transmits the clock on the TX/CK line.
The TX/CK pin output driver is automatically enabled
when the AUSART is configured for synchronous
transmit or receive operation. Serial data bits change
on the leading edge to ensure they are valid at the trail-
ing edge of each clock. One clock cycle is generated
for each data bit. Only as many clock cycles are
generated as there are data bits.
16.3.1.2
Synchronous Master Transmission
Data is transferred out of the device on the RX/DT pin.
The RX/DT and TX/CK pin output drivers are automat-
ically enabled when the AUSART is configured for
synchronous master transmit operation.
A transmission is initiated by writing a character to the
TXREG register. If the TSR still contains all or part of a
previous character, the new character data is held in
the TXREG until the last bit of the previous character
has been transmitted. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXREG is immediately trans-
ferred to the TSR. The transmission of the character
commences immediately following the transfer of the
data to the TSR from the TXREG.
Each data bit changes on the leading edge of the
master clock and remains valid until the subsequent
leading clock edge.
16.3.1.3
Synchronous Master Transmission
Setup:
1.
Initialize the SPBRG register and the BRGH bit
to achieve the desired baud rate (refer to
2.
Enable the synchronous master serial port by
setting bits SYNC, SPEN and CSRC.
3.
Disable Receive mode by clearing bits SREN
and CREN.
4.
Enable Transmit mode by setting the TXEN bit.
5.
If 9-bit transmission is desired, set the TX9 bit.
6.
If interrupts are desired, set the TXIE bit of the
PIE1 register and the GIE and PEIE bits of the
INTCON register.
7.
If 9-bit transmission is selected, the ninth bit
should be loaded in the TX9D bit.
8.
Start transmission by loading data to the TXREG
register.
Note:
The TSR register is not mapped in data
memory, so it is not available to the user.
相關(guān)PDF資料
PDF描述
1-583853-1 CONN CONTACT TWIN LEAF 20-24AWG
583259-3 CONN CONTACT FORK 24-20AWG
583362-4 CONN FORK CONTACT 20-18AWG .110
583875-5 CONN CONTACT 20-16AWG 30AU CRIMP
1-583853-0 CONTACT CRIMP 24-20AWG .100-.156
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
ATTINY13V-10SSU-SL383-EW 制造商:Atmel Corporation 功能描述:
ATtiny13V-10SU 功能描述:8位微控制器 -MCU 1kB Flash 0.064kB EEPROM 6 I/O Pins RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時(shí)鐘頻率:50 MHz 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT
ATTINY13V-10SU SL383 制造商:Atmel Corporation 功能描述:MCU 8-bit ATtiny AVR RISC 1KB Flash 2.5V/3.3V/5V 8-Pin SOIC EIAJ T/R
ATTINY13V-10SUR 功能描述:8位微控制器 -MCU AVR 1KB FLSH 64B EE 64B SRAM-10MHz 1.8V RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時(shí)鐘頻率:50 MHz 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT
ATTINY13V-W-11 功能描述:8位微控制器 -MCU Microcontroller RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時(shí)鐘頻率:50 MHz 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT