September 9, 2003
Am29LV128MH/L
29
D A T A S H E E T
means that Write Buffer Programming cannot be per-
formed across multiple sectors. If the system attempts
to load programming data outside of the selected
write-buffer page, the operation will abort.
Note that if a Write Buffer address location is loaded
multiple times, the address/data pair counter will be
decremented for every data load operation. The host
system must therefore account for loading a
write-buffer location more than once. The counter dec-
rements for each data load operation, not for each
unique write-buffer-address location. Note also that if
an address location is loaded more than once into the
buffer, the final data loaded for that address will be
programmed.
Once the specified number of write buffer locations
have been loaded, the system must then write the Pro-
gram Buffer to Flash command at the sector address.
Any other address and data combination aborts the
Write Buffer Programming operation. The device then
begins programming. Data polling should be used
while monitoring the last address location loaded into
the write buffer. DQ7, DQ6, DQ5, and DQ1 should be
monitored to determine the device status during Write
Buffer Programming.
The write-buffer programming operation can be sus-
pended using the standard program suspend/resume
commands. Upon successful completion of the Write
Buffer Programming operation, the device is ready to
execute the next command.
The Write Buffer Programming Sequence can be
aborted in the following ways:
■
Load a value that is greater than the page buffer
size during the Number of Locations to Program
step.
■
Write to an address in a sector different than the
one specified during the Write-Buffer-Load com-
mand.
■
Write an Address/Data pair to a different
write-buffer-page than the one selected by the
Starting Address during the write buffer data load-
ing stage of the operation.
■
Write data other than the Confirm Command after
the specified number of data load cycles.
The abort condition is indicated by DQ1 = 1, DQ7 =
DATA# (for the last address location loaded), DQ6 =
toggle, and DQ5=0. A Write-to-Buffer-Abort Reset
command sequence must be written to reset the de-
vice for the next operation. Note that the full 3-cycle
Write-to-Buffer-Abort Reset command sequence is re-
quired when using Write-Buffer-Programming features
in Unlock Bypass mode.
Programming is allowed in any sequence and across
sector boundaries.
A bit cannot be programmed
from “0” back to a “1.”
Attempting to do so may
cause the device to set DQ5 = 1, or cause the DQ7
and DQ6 status bits to indicate the operation was suc-
cessful. However, a succeeding read will show that the
data is still “0.” Only erase operations can convert a “0”
to a “1.”
Accelerated Program
The device offers accelerated program operations
through the WP#/ACC pin. When the system asserts
V
HH
on the WP#/ACC pin, the device automatically en-
ters the Unlock Bypass mode. The system may then
write the two-cycle Unlock Bypass program command
sequence. The device uses the higher voltage on the
WP#/ACC pin to accelerate the operation. Note that
the WP#/ACC pin must not be at V
HH
for operations
other than accelerated programming, or device dam-
age may result. WP# has an internal pullup; when un-
connected, WP# is at V
IH
.
Figure 5 illustrates the algorithm for the program oper-
ation. Refer to the Erase and Program Operations
table in the AC Characteristics section for parameters,
and Figure 18 for timing diagrams.