參數(shù)資料
型號(hào): AD5062
廠商: Analog Devices, Inc.
英文描述: Full Accurate 14/16 Bit Vout nanoDac Buffered, 3V/5V, Sot 23
中文描述: 全面準(zhǔn)確14/16輸出電壓nanoDAC系列緩沖,3V/5V,索23位
文件頁(yè)數(shù): 15/17頁(yè)
文件大小: 829K
代理商: AD5062
Preliminary Technical Data
AD5040/AD5060
used. When data is to be transmitted to the AD5040/AD5060,
P3.3 is taken low. The 80C51/80L51 transmits data only in 8-bit
bytes; thus only eight falling clock edges occur in the transmit
cycle. To load data to the DAC, P3.3 is left low after the first
eight bits are transmitted, and a second write cycle is initiated
to transmit the second byte of data. P3.3 is taken high following
the completion of this cycle. The 80C51/80L51 outputs the
serial data in a format which has the LSB first. The
AD5040/AD5060 requires its data with the MSB as the first bit
received. The 80C51/80L51 transmit routine should take this
into account.
Rev. PrC | Page 15 of 17
Figure 27. AD5040/AD5060 to 80C51/80L51 Interface
AD5040/AD5060 to Microwire Interface
Figure 28 shows an interface between the AD5040/AD5060 and
any microwire compatible device. Serial data is shifted out on
the falling edge of the serial clock and is clocked into the
AD5040/AD5060 on the rising edge of the SK.
Figure 28. AD5040/AD5060 to MICROWIRE Interface
APPLICATIONS
Choosing a Reference for the AD5040/AD5060.
To achieve the optimum performance from the AD5060,
thought should be given to the choice of a precision voltage
reference. The AD5040/AD5060 have just one reference input,
REFIN. The voltage on the reference input is used to supply the
positive input to the Dac . Therefore any error in the reference
will be reflected in the Dac.
There are 4 possible sources of error when choosing a voltage
reference for high accuracy applications; initial accuracy, ppm
drift, long term drift and output voltage noise. Initial accuracy
on the output voltage of the Dac will lead to a full scale error in
the Dac. To minimize these errors, a reference with high initial
accuracy is preferred. Also, choosing a reference with an output
trim adjustment, such as the ADR425 allow a system designer
to trim system errors out by setting a reference voltage to a
voltage other than the nominal. The trim adjustment can also
be used at temperature to trim out any error.
Figure 29. ADR425 as Reference to AD5040. ADR420 can be
used for AD5060.
Long term drift is a measure of how much the reference drifts
over time. A reference with a tight long term drift specification
ensures that the overall solution remains relatively stable
during its entire lifetime.
The temperature co-efficient of a references output voltage
affect INL,DNL TUE. A reference with a tight temperature co-
efficient specification should be chosen to reduce temperatue
dependence of the Dac output voltage on ambient conditions.
In high accuracy applications, which have a relatively low
noise budget, reference output voltage noise needs to be
considered. Choosing a reference with as low an output noise
voltage as practical for the system noise resolution required is
important. Precision voltage references such as the ADR435
produce low output noise in the 0.1-10Hz region. Examples of
some recommended precision references for use as supply to
the AD5060 are shown in the figure below..
Part list of precision references for use with
AD5040/AD5060.
Part No.
Initial
Accuracy
(mV max)
ADR420
+/-6
3
ADR425
+/-6
3
ADR02
+/-5
3
ADR395
+/-6
25
Bipolar Operation Using the AD5040/AD5060
The AD5040/AD5060 has been designed for single-supply
operation but a bipolar output range is also possible using the
circuit in Figure 30. The circuit below will give an output
voltage range of ±5 V. Rail-to-rail operation at the amplifier
output is achievable using an AD820 or an OP295 as the output
amplifier.
The output voltage for any input code can be calculated as
follows:
Temp Drift
(ppm
o
C max)
0.1-10Hz Noise
(uV p-p typ)
1.75
3.4
15
5
相關(guān)PDF資料
PDF描述
AD5063 Full Accurate 14/16 Bit Vout nanoDac Buffered, 3V/5V, Sot 23
AD5062BRJ-1 Full Accurate 16 Bit Vout nanoDac, 2.7V- 5.5V, in a Sot 23
AD5062BRJ-2 Full Accurate 16 Bit Vout nanoDac, 2.7V- 5.5V, in a Sot 23
AD5062BRJ-3 Full Accurate 16 Bit Vout nanoDac, 2.7V- 5.5V, in a Sot 23
AD5063BRM-1 Full Accurate 16 Bit Vout nanoDac, 2.7V- 5.5V, in a Sot 23
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD50621 制造商:AD 制造商全稱(chēng):Analog Devices 功能描述:Fully Accurate, 16-Bit, Unbuffered VOUT, Quad SPI Interface, 2.7 V to 5.5 V nanoDAC in a TSSOP
AD5062ARJZ-1 制造商:Analog Devices 功能描述:DAC 1CH R-2R 16BIT 8PIN SOT-23 - Bulk
AD5062ARJZ-1500RL7 功能描述:IC DAC 16BIT 2.7-5.5V SOT23-8 RoHS:是 類(lèi)別:集成電路 (IC) >> 數(shù)據(jù)采集 - 數(shù)模轉(zhuǎn)換器 系列:nanoDAC™ 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:50 系列:- 設(shè)置時(shí)間:4µs 位數(shù):12 數(shù)據(jù)接口:串行 轉(zhuǎn)換器數(shù)目:2 電壓電源:單電源 功率耗散(最大):- 工作溫度:-40°C ~ 85°C 安裝類(lèi)型:表面貼裝 封裝/外殼:8-TSSOP,8-MSOP(0.118",3.00mm 寬) 供應(yīng)商設(shè)備封裝:8-uMAX 包裝:管件 輸出數(shù)目和類(lèi)型:2 電壓,單極 采樣率(每秒):* 產(chǎn)品目錄頁(yè)面:1398 (CN2011-ZH PDF)
AD5062ARJZ-1REEL7 功能描述:IC DAC 16BIT 2.7-5.5V SOT23-8 RoHS:是 類(lèi)別:集成電路 (IC) >> 數(shù)據(jù)采集 - 數(shù)模轉(zhuǎn)換器 系列:nanoDAC™ 標(biāo)準(zhǔn)包裝:47 系列:- 設(shè)置時(shí)間:2µs 位數(shù):14 數(shù)據(jù)接口:并聯(lián) 轉(zhuǎn)換器數(shù)目:1 電壓電源:單電源 功率耗散(最大):55µW 工作溫度:-40°C ~ 85°C 安裝類(lèi)型:表面貼裝 封裝/外殼:28-SSOP(0.209",5.30mm 寬) 供應(yīng)商設(shè)備封裝:28-SSOP 包裝:管件 輸出數(shù)目和類(lèi)型:1 電流,單極;1 電流,雙極 采樣率(每秒):*
AD5062BRJ-1 制造商:AD 制造商全稱(chēng):Analog Devices 功能描述:Full Accurate 16 Bit Vout nanoDac, 2.7V- 5.5V, in a Sot 23