
4
White Electronic Designs Corporation (602) 437-1520 www.wedc.com
White Electronic Designs
W3E16M72SR-XBX
February 2005
Rev. 2
The pipelined, multibank architecture of DDR SDRAMs
allows for concurrent operation, thereby providing high
effective bandwidth by hiding row precharge and activation
time.
An auto refresh mode is provided, along with a power-
saving power-down mode.
FUNCTIONAL DESCRIPTION
Read and write accesses to the DDR SDRAM are burst
oriented; accesses start at a selected location and continue
for a programmed number of locations in a programmed
sequence. Accesses begin with the registration of an
ACTIVE command which is then followed by a READ or
WRITE command. The address bits registered coincident
with the ACTIVE command are used to select the bank and
row to be accessed (BA0 and BA1 select the bank, A0-12
select the row). The address bits registered coincident
with the READ or WRITE command are used to select the
starting column location for the burst access.
Prior to normal operation, the SDRAM must be initialized.
The following sections provide detailed information
covering device initialization, register denition, command
descriptions and device operation.
INITIALIZATION
DDR SDRAMs must be powered up and initialized in a
predened manner. Operational procedures other than
those specied may result in undened operation. Power
must rst be applied to VCC and VCCQ simultaneously, and
then to VREF (and to the system VTT). VTT must be applied
after VCCQ to avoid device latch-up, which may cause
permanent damage to the device. VREF can be applied any
time after VCCQ but is expected to be nominally coincident
with VTT. Except for CKE, inputs are not recognized as
valid until after VREF is applied. CKE is an SSTL_2 input
but will detect an LVCMOS LOW level after VCC is applied.
Maintaining an LVCMOS LOW level on CKE during power-
up is required to ensure that the DQ and DQS outputs will
be in the High-Z state, where they will remain until driven
in normal operation (by a read access). After all power
supply and reference voltages are stable, and the clock
is stable, the DDR SDRAM requires a 200s delay prior
to applying an executable command.
GENERAL DESCRIPTION
The 128MByte (1Gb) DDR SDRAM is a high-speed CMOS,
dynamic random-access, memory using 5 chips containing
268,435,456 bits. Each chip is internally congured as a
quad-bank DRAM. Each of the chip’s 67,108,864-bit banks
is organized as 8,192 rows by 512 columns by 16 bits.
The 128 MB DDR SDRAM uses a double data rate
architecture to achieve high-speed operation. The
double data rate architecture is essentially a 2n-prefetch
architecture with an interface designed to transfer two data
words per clock cycle at the I/O pins. A single read or write
access for the 128MB DDR SDRAM effectively consists
of a single 2n-bit wide, one-clock-cycle data tansfer at the
internal DRAM core and two corresponding n-bit wide,
one-half-clock-cycle data transfers at the I/O pins.
A bidirectional data strobe (DQS) is transmitted externally,
along with data, for use in data capture at the receiver. DQS
is a strobe transmitted by the DDR SDRAM during READs
and by the memory contoller during WRITEs. DQS is edge-
aligned with data for READs and center-aligned with data
for WRITEs. Each chip has two data strobes, one for the
lower byte and one for the upper byte.
The 128MB DDR SDRAM operates from a differential clock
(CK and CK#); the crossing of CK going HIGH and CK#
going LOW will be referred to as the positive edge of CK.
Commands (address and control signals) are registered
at every positive edge of CK. Input data is registered on
both edges of DQS, and output data is referenced to both
edges of DQS, as well as to both edges of CK.
Read and write accesses to the DDR SDRAM are burst
oriented; accesses start at a selected location and continue
for a programmed number of locations in a programmed
sequence. Accesses begin with the registration of an
ACTIVE command, which is then followed by a READ or
WRITE command. The address bits registered coincident
with the ACTIVE command are used to select the bank
and row to be accessed. The address bits registered
coincident with the READ or WRITE command are used
to select the bank and the starting column location for the
burst access.
The DDR SDRAM provides for programmable READ
or WRITE burst lengths of 2, 4, or 8 locations. An auto
precharge function may be enabled to provide a self-
timed row precharge that is initiated at the end of the
burst access.