參數(shù)資料
型號(hào): MPC755BRX450LE
廠商: MOTOROLA INC
元件分類: 微控制器/微處理器
英文描述: 32-BIT, 450 MHz, RISC PROCESSOR, CBGA360
封裝: 25 X 25 MM, 3.20 MM HEIGHT, 1.27 MM PITCH, CERAMIC, BGA-360
文件頁數(shù): 32/52頁
文件大?。?/td> 1278K
代理商: MPC755BRX450LE
38
MPC755 RISC Microprocessor Hardware Specifications
MOTOROLA
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
System Design Information
for proper device operation. The snooped address and transfer attribute inputs are: A[0:31], AP[0:3],
TT[0:4], TBST, and GBL.
The data bus input receivers are normally turned off when no read operation is in progress and, therefore,
do not require pull-up resistors on the bus. Other data bus receivers in the system, however, may require
pull-ups, or that those signals be otherwise driven by the system during inactive periods by the system. The
data bus signals are: DH[0:31], DL[0:31], and DP[0:7].
If 32-bit data bus mode is selected, the input receivers of the unused data and parity bits will be disabled,
and their outputs will drive logic zeros when they would otherwise normally be driven. For this mode, these
pins do not require pull-up resistors, and should be left unconnected by the system to minimize possible
output switching.
If address or data parity is not used by the system, and the respective parity checking is disabled through
HID0, the input receivers for those pins are disabled, and those pins do not require pull-up resistors and
should be left unconnected by the system. If all parity generation is disabled through HID0, then all parity
checking should also be disabled through HID0, and all parity pins may be left unconnected by the system.
The L2 interface does not require pull-up resistors.
1.8.7
JTAG Configuration Signals
Boundary scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the
IEEE 1149.1 specification, but is provided on all processors that implement the PowerPC architecture.
While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, more
reliable power-on reset performance will be obtained if the TRST signal is asserted during power-on reset.
Because the JTAG interface is also used for accessing the common on-chip processor (COP) function,
simply tying TRST to HRESET is not practical.
The COP function of these processors allows a remote computer system (typically, a PC with dedicated
hardware and debugging software) to access and control the internal operations of the processor. The COP
interface connects primarily through the JTAG port of the processor, with some additional status monitoring
signals. The COP port requires the ability to independently assert HRESET or TRST in order to fully control
the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers,
power supply failures, or push-button switches, then the COP reset signals must be merged into these signals
with logic.
The arrangement shown in Figure 24 allows the COP to independently assert HRESET or TRST, while
ensuring that the target can drive HRESET as well. An optional pull-down resistor on TRST can be
populated to ensure that the JTAG scan chain is initialized during power-on if the JTAG interface and COP
header will not be used; otherwise, this resistor should be unpopulated and TRST is asserted when the
system reset signal (HRESET) is asserted and the JTAG interface is responsible for driving TRST when
needed.
The COP header shown in Figure 24 adds many benefits—breakpoints, watchpoints, register and memory
examination/modification, and other standard debugger features are possible through this interface—and
can be as inexpensive as an unpopulated footprint for a header to be added when needed.
The COP interface has a standard header for connection to the target system, based on the 0.025"
square-post 0.100" centered header assembly (often called a Berg header). The connector typically has pin
14 removed as a connector key.
相關(guān)PDF資料
PDF描述
MPC755CPX400 32-BIT, 400 MHz, RISC PROCESSOR, PBGA360
MPC755BVT300 32-BIT, 300 MHz, RISC PROCESSOR, PBGA360
MPC745BVT300 32-BIT, 300 MHz, RISC PROCESSOR, PBGA255
MPC745BVT350 32-BIT, 350 MHz, RISC PROCESSOR, PBGA255
MPC755CRX400 32-BIT, 400 MHz, RISC PROCESSOR, CBGA360
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MPC755BVT300LE 功能描述:微處理器 - MPU RV2.8106C RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:536 MHz 程序存儲(chǔ)器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:FBGA-324
MPC755BVT350LE 功能描述:微處理器 - MPU RV2.8,106C RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:536 MHz 程序存儲(chǔ)器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:FBGA-324
MPC755CPX350LE 功能描述:微處理器 - MPU 360PBGA,RV2.8,6W RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:536 MHz 程序存儲(chǔ)器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:FBGA-324
MPC755CPX400LE 功能描述:微處理器 - MPU GF RV2.8360PBGA 4A105C RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:536 MHz 程序存儲(chǔ)器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:FBGA-324
MPC755CPX400LE 制造商:Freescale Semiconductor 功能描述:IC 32BIT MPU 400MHZ BGA-360