參數(shù)資料
型號: MMBD2837LT3
廠商: ON SEMICONDUCTOR
元件分類: 二極管(射頻、小信號、開關(guān)、功率)
英文描述: 0.15 A, 2 ELEMENT, SILICON, SIGNAL DIODE, TO-236AB
封裝: CASE 318-08, 3 PIN
文件頁數(shù): 4/33頁
文件大小: 308K
代理商: MMBD2837LT3
7–11
Surface Mount Information
Motorola Small–Signal Transistors, FETs and Diodes Device Data
SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within a
short time could result in device failure. Therefore, the
following items should always be observed in order to mini-
mize the thermal stress to which the devices are subjected.
Always preheat the device.
The delta temperature between the preheat and soldering
should be 100
°C or less.*
When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering method,
the difference should be a maximum of 10
°C.
The soldering temperature and time should not exceed
260
°C for more than 10 seconds.
When shifting from preheating to soldering, the maximum
temperature gradient shall be 5
°C or less.
After soldering has been completed, the device should be
allowed to cool naturally for at least three minutes.
Gradual cooling should be used since the use of forced
cooling will increase the temperature gradient and will
result in latent failure due to mechanical stress.
Mechanical stress or shock should not be applied during
cooling.
* Soldering a device without preheating can cause excessive
thermal shock and stress which can result in damage to the
device.
TYPICAL SOLDER HEATING PROFILE
For any given circuit board, there will be a group of control
settings that will give the desired heat pattern. The operator
must set temperatures for several heating zones and a figure
for belt speed. Taken together, these control settings make
up a heating “profile” for that particular circuit board. On
machines controlled by a computer, the computer remem-
bers these profiles from one operating session to the next.
Figure 2 shows a typical heating profile for use when
soldering a surface mount device to a printed circuit board.
This profile will vary among soldering systems, but it is a
good starting point. Factors that can affect the profile include
the type of soldering system in use, density and types of
components on the board, type of solder used, and the type
of board or substrate material being used. This profile shows
temperature versus time. The line on the graph shows the
actual temperature that might be experienced on the surface
of a test board at or near a central solder joint. The two
profiles are based on a high density and a low density board.
The Vitronics SMD310 convection/infrared reflow soldering
system was used to generate this profile. The type of solder
used was 62/36/2 Tin Lead Silver with a melting point
between 177 –189
°C. When this type of furnace is used for
solder reflow work, the circuit boards and solder joints tend to
heat first. The components on the board are then heated by
conduction. The circuit board, because it has a large surface
area, absorbs the thermal energy more efficiently, then
distributes this energy to the components. Because of this
effect, the main body of a component may be up to 30
degrees cooler than the adjacent solder joints.
STEP 1
PREHEAT
ZONE 1
“RAMP”
STEP 2
VENT
“SOAK”
STEP 3
HEATING
ZONES 2 & 5
“RAMP”
STEP 4
HEATING
ZONES 3 & 6
“SOAK”
STEP 5
HEATING
ZONES 4 & 7
“SPIKE”
STEP 6
VENT
STEP 7
COOLING
200
°C
150
°C
100
°C
50
°C
TIME (3 TO 7 MINUTES TOTAL)
TMAX
SOLDER IS LIQUID FOR
40 TO 80 SECONDS
(DEPENDING ON
MASS OF ASSEMBLY)
205
° TO 219°C
PEAK AT
SOLDER JOINT
DESIRED CURVE FOR LOW
MASS ASSEMBLIES
100
°C
150
°C
160
°C
170
°C
140
°C
Figure 2. Typical Solder Heating Profile
DESIRED CURVE FOR HIGH
MASS ASSEMBLIES
相關(guān)PDF資料
PDF描述
MMBZ27VCL/DG TVS DIODE, TO-236AB
MMBZ18VCL/DG TVS DIODE, TO-236AB
MMBZ33VAL/DG TVS DIODE, TO-236AB
MMBZ12VAL/DG TVS DIODE, TO-236AB
MMBZ5221BW 2.4 V, 0.2 W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MMBD2838 功能描述:整流器 Hi Conductance Fast RoHS:否 制造商:Vishay Semiconductors 產(chǎn)品:Standard Recovery Rectifiers 配置: 反向電壓:100 V 正向電壓下降: 恢復(fù)時間:1.2 us 正向連續(xù)電流:2 A 最大浪涌電流:35 A 反向電流 IR:5 uA 安裝風格:SMD/SMT 封裝 / 箱體:DO-221AC 封裝:Reel
MMBD2838_Q 功能描述:整流器 Hi Conductance Fast RoHS:否 制造商:Vishay Semiconductors 產(chǎn)品:Standard Recovery Rectifiers 配置: 反向電壓:100 V 正向電壓下降: 恢復(fù)時間:1.2 us 正向連續(xù)電流:2 A 最大浪涌電流:35 A 反向電流 IR:5 uA 安裝風格:SMD/SMT 封裝 / 箱體:DO-221AC 封裝:Reel
MMBD2838G 制造商:ZOWIE 制造商全稱:Zowie Technology Corporation 功能描述:Monolithic Dual Switching Diodes
MMBD2838LT1 功能描述:二極管 - 通用,功率,開關(guān) 75V 150mA RoHS:否 制造商:STMicroelectronics 產(chǎn)品:Switching Diodes 峰值反向電壓:600 V 正向連續(xù)電流:200 A 最大浪涌電流:800 A 配置: 恢復(fù)時間:2000 ns 正向電壓下降:1.25 V 最大反向漏泄電流:300 uA 最大功率耗散: 工作溫度范圍: 安裝風格:SMD/SMT 封裝 / 箱體:ISOTOP 封裝:Tube
MMBD2838LT1G 功能描述:二極管 - 通用,功率,開關(guān) 75V 150mA RoHS:否 制造商:STMicroelectronics 產(chǎn)品:Switching Diodes 峰值反向電壓:600 V 正向連續(xù)電流:200 A 最大浪涌電流:800 A 配置: 恢復(fù)時間:2000 ns 正向電壓下降:1.25 V 最大反向漏泄電流:300 uA 最大功率耗散: 工作溫度范圍: 安裝風格:SMD/SMT 封裝 / 箱體:ISOTOP 封裝:Tube