Resets and Interrupts
M68HC11E Family Data Sheet, Rev. 5.1
80
Freescale Semiconductor
5.2.2 External Reset (RESET)
The CPU distinguishes between internal and external reset conditions by sensing whether the reset pin
rises to a logic 1 in less than two E-clock cycles after an internal device releases reset. When a reset
condition is sensed, the RESET pin is driven low by an internal device for four E-clock cycles, then
released. Two E-clock cycles later it is sampled. If the pin is still held low, the CPU assumes that an
external reset has occurred. If the pin is high, it indicates that the reset was initiated internally by either
the COP system or the clock monitor.
CAUTION
Do not connect an external resistor capacitor (RC) power-up delay circuit to the reset pin of M68HC11
devices because the circuit charge time constant can cause the device to misinterpret the type of reset
that occurred.
5.2.3 Computer Operating Properly (COP) Reset
The MCU includes a COP system to help protect against software failures. When the COP is enabled, the
software is responsible for keeping a free-running watchdog timer from timing out. When the software is
no longer being executed in the intended sequence, a system reset is initiated.
The state of the NOCOP bit in the CONFIG register determines whether the COP system is enabled or
disabled. To change the enable status of the COP system, change the contents of the CONFIG register
and then perform a system reset. In the special test and bootstrap operating modes, the COP system is
initially inhibited by the disable resets (DISR) control bit in the TEST1 register. The DISR bit can
subsequently be written to 0 to enable COP resets.
The COP timer rate control bits CR[1:0] in the OPTION register determine the COP timeout period. The
system E clock is divided by 215 and then further scaled by a factor shown in Table 5-1. After reset, these bits are 0, which selects the fastest timeout period. In normal operating modes, these bits can be written
only once within 64 bus cycles after reset.
Table 5-1. COP Timer Rate Select
CR[1:0]
Divide
E/215 By
XTAL = 4.0 MHz
Timeout
– 0 ms, + 32.8 ms
XTAL = 8.0 MHz
Timeout
– 0 ms, + 16.4 ms
XTAL = 12.0 MHz
Timeout
– 0 ms, + 10.9 ms
XTAL = 16.0 MHz
Timeout
– 0 ms, + 8.2 ms
0 0
1
32.768 ms
16.384 ms
10.923 ms
8.19 ms
0 1
4
131.072 ms
65.536 ms
43.691 ms
32.8 ms
1 0
16
524.28 ms
262.14 ms
174.76 ms
131 ms
1 1
64
2.098 s
1.049 s
699.05 ms
524 ms
E =
1.0 MHz
2.0 MHz
3.0 MHz
4.0 MHz