is the input power.
Combining  the  two  equations,  one  can  obtain  the
?/DIV>
C
pin3
K
osc
?L
p
?P
in
R
?V
pk
Consequently, a linear dependency links the output
voltage to the ac line amplitude at a given input power.
Figure 34. Follower Boost Characteristics
The Regulation Block is Active
t
on
on--time
V
o
P
in
Output Voltage
Input Power
t
on
= k/V
o
2
V
ac
(V
ac
)max
(V
ac
)min
The  behavior  of  the  output  voltage  is  depicted  in
Figures 34 and 35. In particular, Figure 35 illustrates how
the output voltage converges to a stable equilibrium level.
First,atagivenaclinevoltage,theon- -timeisdictatedbythe
power demand. Then, the follower boost characteristic
makes correspond one output voltage level to this on- -time.
Combining these two laws, it appears that the power level
forces the output voltage.
One can notice that the system is fully stable:
?nbsp Ifanoutputvoltageincreasemakesitmoveawayfrom
its equilibrium value, the on- -time will immediately
diminishaccordingtothefollowerboostlaw.Thiswill
result in a delivered power decrease. Consequently,
the supplied power being too low, the output voltage
will decrease back,
?nbsp Inthesameway,iftheoutputvoltagedecreases,more
power will be transferred and then the output voltage
will increase back.
Figure 35. Follower Boost Output Voltage
V
acLL
V
ac
V
acHL
V
ac
V
o
Regulation Block is Active
V
o
= V
pk
P
in
(P
in
)min
(P
in
)max
non usable area
Mode Selection
The operation mode is simply selected by adjusting the
oscillatorcapacitorvalue.AsshowninFigure 35,theoutput
voltagefirsthasanincreasinglinearcharacteristicversusthe
ac line magnitude and then is clamped down to the
regulation value. In the traditional mode, the linear area
must be rejected. This is achieved by dimensioning the
oscillator  capacitor  so  that the  boost can  deliver  the
maximum  power  while  the  output  voltage  equals  its
regulation level and this, whatever the given input voltage.
Practically, that means that whatever the power and input
voltage conditions are, the follower boost would generate
output voltages values higher than the regulation level, if
there was no regulation block.
In other words, if (V
o
)
regL
is the low output regulation
level:
r
V
o
u
regL
d
R
o
2
?/DIV>
C
T
+ C
int
K
osc
?L
p
?/DIV>
r
P
in
u
max
R
?V
pk
Consequently,
C
T
e - -C
int
+
4 ?K
osc
?L
p
?/DIV>
r
P
in
u
max ?/DIV>
r
V
o
u
2
regL
R
2
o
?V
2
pk
Using I
regL
(regulation block current reference), this
equation can be simplified as follows:
C
T
e - -C
int
+
4 ?K
osc
?L
p
?/DIV>
r
P
in
u
max ?I
2
regL
V
2
pk
In the Follower Boost case, the oscillator capacitor must
be chosen so that the wished characteristics are obtained.
Consequently,  the  simple  choice  of  the  oscillator
capacitor enables the mode selection.
相關(guān)代理商/技術(shù)參數(shù) |
參數(shù)描述 |
MC33260P |
功能描述:功率因數(shù)校正 IC Critical Conduction RoHS:否 制造商:Fairchild Semiconductor 開關(guān)頻率:300 KHz 最大功率耗散: 最大工作溫度:+ 125 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:SOIC-8 封裝:Reel |
MC33260PG |
功能描述:功率因數(shù)校正 IC Critical Conduction Mode PFC RoHS:否 制造商:Fairchild Semiconductor 開關(guān)頻率:300 KHz 最大功率耗散: 最大工作溫度:+ 125 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:SOIC-8 封裝:Reel |
MC33261 |
制造商:SPC Multicomp 功能描述:HEATSINK TO220/218 16.7/W 制造商:SPC Multicomp 功能描述:HEATSINK TO220/218 16.7C/W 制造商:SPC Multicomp 功能描述:HEAT SINK; Packages Cooled:TO-218 / TO-220; Thermal Resistance:16.7C/W; External Height - Imperial:1"; External Height - Metric:25.4mm; External Width - Imperial:0.654"; External Width - Metric:16.6mm; Heat Sink Material:Aluminium ;RoHS Compliant: Yes |
MC33261P |
制造商:Rochester Electronics LLC 功能描述:- Bulk |
MC33262 |
制造商:SPC Multicomp 功能描述:HEATSINK TO220/218 12.9/W 制造商:SPC Multicomp 功能描述:HEATSINK TO220/218 12.9C/W 制造商:SPC Multicomp 功能描述:HEAT SINK; Packages Cooled:TO-218 / TO-220; Thermal Resistance:12.9C/W; External Height - Imperial:1.5"; External Height - Metric:38.1mm; External Width - Imperial:0.654"; External Width - Metric:16.6mm; Heat Sink Material:Aluminium;RoHS Compliant: Yes |