MAX5875
16-Bit, 200Msps, High-Dynamic-Performance,
Dual DAC with CMOS Inputs
______________________________________________________________________________________
15
The data converter die attaches to an EP lead frame with
the back of this frame exposed at the package bottom
surface, facing the PCB side of the package. This allows
for a solid attachment of the package to the PCB with
standard infrared reflow (IR) soldering techniques. A spe-
cially created land pattern on the PCB, matching the size
of the EP (6mm x 6mm), ensures the proper attachment
and grounding of the DAC. Refer to the MAX5875 EV kit
data sheet. Designing vias into the land area and imple-
menting large ground planes in the PCB design allow for
the highest performance operation of the DAC. Use an
array of at least 4 x 4 vias (
≤ 0.3mm diameter per via hole
and 1.2mm pitch between via holes) for this 68-pin QFN-
EP package. Connect the MAX5875 exposed paddle to
GND. Vias connect the land pattern to internal or external
copper planes. Use as many vias as possible to the
ground plane to minimize inductance.
Static Performance Parameter Definitions
Integral Nonlinearity (INL)
Integral nonlinearity is the deviation of the values on an
actual transfer function from either a best straight-line fit
(closest approximation to the actual transfer curve) or a
line drawn between the end points of the transfer func-
tion, once offset and gain errors have been nullified.
For a DAC, the deviations are measured at every indi-
vidual step.
Differential Nonlinearity (DNL)
Differential nonlinearity is the difference between an
actual step height and the ideal value of 1 LSB. A DNL
error specification of less than 1 LSB guarantees a
monotonic transfer function.
Offset Error
The offset error is the difference between the ideal and
the actual offset current. For a DAC, the offset point is
the average value at the output for the two midscale
digital input codes with respect to the full scale of the
DAC. This error affects all codes by the same amount.
Gain Error
A gain error is the difference between the ideal and the
actual full-scale output voltage on the transfer curve,
after nullifying the offset error. This error alters the slope
of the transfer function and corresponds to the same
percentage error in each step.
Dynamic Performance Parameter Definitions
Signal-to-Noise Ratio (SNR)
For a waveform perfectly reconstructed from digital sam-
ples, the theoretical maximum SNR is the ratio of the full-
scale analog output (RMS value) to the RMS quantization
error (residual error). The ideal, theoretical minimum can
be derived from the DAC’s resolution (N bits):
SNR = 6.02 x N + 1.76
However, noise sources such as thermal noise, reference
noise, clock jitter, etc., affect the ideal reading; therefore,
SNR is computed by taking the ratio of the RMS signal to
the RMS noise, which includes all spectral components
minus the fundamental, the first four harmonics, and the
DC offset.
Spurious-Free Dynamic Range (SFDR)
SFDR is the ratio of RMS amplitude of the carrier fre-
quency (maximum signal components) to the RMS value
of their next-largest distortion component. SFDR is usual-
ly measured in dBc and with respect to the carrier fre-
quency amplitude or in dBFS with respect to the DAC’s
full-scale range. Depending on its test condition, SFDR is
observed within a predefined window or to Nyquist.
Two-Tone Intermodulation Distortion (IMD)
The two-tone IMD is the ratio expressed in dBc (or dBFS)
of the worst 3rd-order (or higher) IMD product(s) to either
output tone.
Adjacent Channel Leakage Power Ratio (ACLR)
Commonly used in combination with wideband code-
division multiple-access (W-CDMA), ACLR reflects the
leakage power ratio in dB between the measured
power within a channel relative to its adjacent channel.
ACLR provides a quantifiable method of determining
out-of-band spectral energy and its influence on an
adjacent channel when a bandwidth-limited RF signal
passes through a nonlinear device.
Settling Time
The settling time is the amount of time required from the
start of a transition until the DAC output settles its new
output value to within the converter’s specified accuracy.
Glitch Impulse
A glitch is generated when a DAC switches between two
codes. The largest glitch is usually generated around the
midscale transition, when the input pattern transitions from
011...111 to 100...000. The glitch impulse is found by inte-
grating the voltage of the glitch at the midscale transition
over time. The glitch impulse is usually specified in pVs.