to trigger alarms. The IRQ/FOUT output will be set by
參數(shù)資料
型號(hào): ISL12026IBZ-T7A
廠商: Intersil
文件頁數(shù): 5/24頁
文件大?。?/td> 0K
描述: IC RTC/CALENDAR EEPROM 8SOIC
標(biāo)準(zhǔn)包裝: 250
類型: 時(shí)鐘/日歷
特點(diǎn): 警報(bào)器,閏年
時(shí)間格式: HH:MM:SS(12/24 小時(shí))
數(shù)據(jù)格式: YY-MM-DD-dd
接口: I²C,2 線串口
電源電壓: 2.7 V ~ 5.5 V
電壓 - 電源,電池: 1.8 V ~ 5.5 V
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 8-SOIC(0.154",3.90mm 寬)
供應(yīng)商設(shè)備封裝: 8-SOIC
包裝: 帶卷 (TR)
13
FN8231.9
November 30, 2010
to trigger alarms. The IRQ/FOUT output will be set by
either alarm, and will need to be cleared to enable
triggering by a subsequent alarm. Polling the SR will
reveal which alarm has been set.
2. Interrupt Mode (or “Pulsed Interrupt Mode” or PIM) is
enabled by setting the AL0E or AL1E bit to “1” the IM bit
to “1”, and disabling the frequency output. If both AL0E
and AL1E bits are set to "1", then both AL0E and AL1E
PIM alarms will function. The IRQ/FOUT output will now
be pulsed each time each of the alarms occurs. This
means that once the interrupt mode alarm is set, it will
continue to alarm for each occurring match of the alarm
and present time. This mode is convenient for hourly or
daily hardware interrupts in microcontroller applications
such as security cameras or utility meter reading.
Interrupt Mode CANNOT be used for general periodic
alarms, however, since a specific time period cannot be
programmed for interrupt, only matches to a specific time
of day. The interrupt mode is only stopped by disabling
the IM bit or the Alarm Enable bits.
Writing to the Alarm Registers
The Alarm Registers are non-volatile but require special
attention to insure a proper non-volatile write takes place.
Specifically, byte writes to individual registers are good for all
but registers 0006h and 0000Eh, which are the DWA0 and
DWA1 registers, respectively. Those registers will require a
special page write for non-volatile storage. The recommended
page write sequences are as follows:
1. 16-byte page writes: The best way to write or update the
Alarm Registers is to perform a 16-byte write beginning at
address 0001h (MNA0) and wrapping around and ending
at address 0000h (SCA0). This will insure that
non-volatile storage takes place. This means that the
code must be designed so that the Alarm0 data is written
starting with Minutes register, and then all the Alarm1
data, with the last byte being the Alarm0 Seconds (the
page ends at the Alarm1 Y2k register and then wraps
around to address 0000h).
Alternatively, the 16-byte page write could start with
address 0009h, wrap around and finish with address
0008h. Note that any page write ending at address
0007h or 000Fh (the highest byte in each Alarm) will not
trigger a non-volatile write, so wrapping around or
overlapping to the following Alarm's Seconds register is
advised.
2. Other non-volatile writes: It is possible to do writes of
less than an entire page, but the final byte must always
be addresses 0000h through 0004h or 0008h though
000Ch to trigger a non-volatile write. Writing to those
blocks of 5 bytes sequentially, or individually, will trigger a
non-volatile write. If the DWA0 or DWA1 registers need to
be set, then enough bytes will need to be written to
overlap with the other Alarm register and trigger the
non-volatile write. For Example, if the DWA0 register is
being set, then the code can start with a multiple byte
write beginning at address 0006h, and then write 3 bytes
ending with the SCA1 register as follows:
Addr
Name
0006h DWA0
0007h Y2K0
0008h SCA1
If the Alarm1 is used, SCA1 would need to have the correct
data written.
Power Control Operation
The power control circuit accepts a VDD and a VBAT input.
Many types of batteries can be used with Intersil RTC
products. For example, 3.0V or 3.6V Lithium batteries are
appropriate, and battery sizes are available that can power
an Intersil RTC device for up to 10 years. Another option is
to use a SuperCap for applications where VDD is interrupted
for up to a month. See “Application Section” on page 19 for
more information.
There are two options for setting the change-over conditions
from VDD to Battery backup mode. The BSW bit in the PWR
register controls this operation:
Option 1 - Standard Mode (ISL12026A Default)
Option 2 - Legacy Mode (ISL12026 Default)
Note that the I2C bus may or may not be operational during
battery backup. That function is controlled by the SBIB bit.
That operation is covered after the power control section.
OPTION 1- STANDARD POWER CONTROL MODE
(ISL12026A DEFAULT)
In the Standard mode, the supply will switch over to the
battery when VDD drops below VTRIP or VBAT, whichever is
lower. In this mode, accidental operation from the battery is
prevented since the battery backup input will only be used
when the VDD supply is shut off.
To select Option 1, BSW bit in the Power Register must be
set to “BSW = 0”. A description of power switchover follows.
Standard Mode Power Switchover
Normal Operating Mode (VDD) to Battery Backup Mode
(VBAT)
To transition from the VDD to VBAT mode, both of the
following conditions must be met:
- Condition 1:
VDD < VBAT - VBATHYS
where VBATHYS ≈ 50mV
- Condition 2:
VDD < VTRIP
where VTRIP ≈ 2.2V
Battery Backup Mode (VBAT) to Normal Mode (VDD)
ISL12026, ISL12026A
相關(guān)PDF資料
PDF描述
ISL12027IV27AZ IC RTC/CALENDAR EEPROM 8-TSSOP
ISL12028IVZ IC RTC/CALENDAR EEPROM 14-TSSOP
ISL12029IVZ IC RTC/CALENDAR EEPROM 14-TSSOP
ISL12030IBZ IC RTC/CALENDAR EEPROM 8-SOIC
ISL12032IVZ IC RTC LP BATT BACK SRAM 14TSSOP
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
ISL12026IVZ 功能描述:實(shí)時(shí)時(shí)鐘 REAL TIME CLK/CLNDR W/EEPROM IN 8LD RoHS:否 制造商:Microchip Technology 功能:Clock, Calendar. Alarm RTC 總線接口:I2C 日期格式:DW:DM:M:Y 時(shí)間格式:HH:MM:SS RTC 存儲(chǔ)容量:64 B 電源電壓-最大:5.5 V 電源電壓-最小:1.8 V 最大工作溫度:+ 85 C 最小工作溫度: 安裝風(fēng)格:Through Hole 封裝 / 箱體:PDIP-8 封裝:Tube
ISL12026IVZ-T 功能描述:實(shí)時(shí)時(shí)鐘 REAL TIME CLK/CLNDR W/EEPROM IN 8LD RoHS:否 制造商:Microchip Technology 功能:Clock, Calendar. Alarm RTC 總線接口:I2C 日期格式:DW:DM:M:Y 時(shí)間格式:HH:MM:SS RTC 存儲(chǔ)容量:64 B 電源電壓-最大:5.5 V 電源電壓-最小:1.8 V 最大工作溫度:+ 85 C 最小工作溫度: 安裝風(fēng)格:Through Hole 封裝 / 箱體:PDIP-8 封裝:Tube
ISL12027 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:Real Time Clock/Calendar with EEPROM
ISL12027_10 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:Real Time Clock/Calendar with EEPROM
ISL12027A 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:Real Time Clock/Calendar with EEPROM