參數(shù)資料
型號: HGTD8P50G1
廠商: HARRIS SEMICONDUCTOR
元件分類: 功率晶體管
英文描述: Mechanism, 2-inch w/front paper feed and partial cutter
中文描述: 12 A, 500 V, P-CHANNEL IGBT, TO-251AA
文件頁數(shù): 6/9頁
文件大?。?/td> 110K
代理商: HGTD8P50G1
6
HGTD8P50G1, HGTD8P50G1S
Operating Frequency Information
Operating frequency information for a typical device (Figure
10) is presented as a guide for estimating device performance
for a specific application. Other typical frequency vs collector
current (I
CE
) plots are possible using the information shown
for a typical unit in Figure 7, Figure 8 and Figure 9. The oper-
ating frequency plot (Figure 10) of a typical device shows
f
MAX1
or f
MAX2
whichever is smaller at each point. The infor-
mation is based on measurements of a typical device and is
bounded by the maximum rated junction temperature.
f
MAX1
is defined by f
MAX1
= 0.05/t
D(OFF)I
. t
D(OFF)I
deadtime
(the denominator) has been arbitrarily held to 10% of the on-
state time for a 50% duty factor. Other definitions are
possible. t
D(OFF)I
is defined as the time between the 90%
point of the trailing edge of the input pulse and the point
where the collector current falls to 90% of its maximum
value. Device Turn-Off delay can establish an additional fre-
quency limiting condition for an application other than T
JMAX
.
t
D(OFF)I
is important when controlling output ripple under a
lightly loaded condition. f
MAX2
is defined by f
MAX2
= (P
D
-
P
C
)/E
OFF
. The allowable dissipation (P
D
) is defined by P
D
=
(T
JMAX
- T
C
)/R
θ
JC
. The sum of device switching and conduc-
tion losses must not exceed Pd. A 50% duty factor was used
(Figure 10) and the conduction losses (Pc) are approximated
by Pc = (V
CE
I
CE
)/2. E
OFF
is defined as the integral of the
instantaneous power loss starting at the trailing edge of the
input pulse and ending at the point where the collector
current equals zero (I
CE
= 0A).
The switching power loss (Figure 10) is defined as f
MAX2
E
OFF
. Turn-On switching losses are not included because
they can be greatly influenced by external circuit conditions
and components.
Handling Precautions for IGBTs
Insulated Gate Bipolar Transistors are susceptible to gate-
insulation damage by the electrostatic discharge of energy
through the devices. When handling these devices, care
should be exercised to assure that the static charge built in
the handler’s body capacitance is not discharged through
the device. With proper handling and application procedures,
however, IGBTs are currently being extensively used in
production by numerous equipment manufacturers in
military, industrial and consumer applications, with virtually
no damage problems due to electrostatic discharge. IGBTs
can be handled safely if the following basic precautions are
taken:
1. Prior to assembly into a circuit, all leads should be kept
shorted together either by the use of metal shorting
springs or by the insertion into conductive material such
as “
ECCOSORBD LD26” or equivalent.
2. When devices are removed by hand from their carriers,
the hand being used should be grounded by any suitable
means - for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from
circuits with power on.
5.
Gate Voltage Rating
- Never exceed the gate-voltage
rating of V
GEM
. Exceeding the rated V
GE
can result in per-
manent damage to the oxide layer in the gate region.
6.
Gate Termination
- The gates of these devices are
essentially capacitors. Circuits that leave the gate open-
circuited or floating should be avoided. These conditions
can result in Turn-On of the device due to voltage buildup
on the input capacitor due to leakage currents or pickup.
7.
Gate Protection
- These devices do not have an internal
monolithic zener diode from gate to emitter. If gate
protection is required an external zener is recommended.
Trademark Emerson and Cumming, Inc.
INTERSILT CORPORATION PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:
4,364,073
4,587,713
4,641,162
4,794,432
4,860,080
4,969,027
4,417,385
4,598,461
4,644,637
4,801,986
4,883,767
4,430,792
4,605,948
4,682,195
4,803,533
4,888,627
4,443,931
4,618,872
4,684,413
4,809,045
4,890,143
4,466,176
4,620,211
4,694,313
4,809,047
4,901,127
4,516,143
4,631,564
4,717,679
4,810,665
4,904,609
4,532,534
4,639,754
4,743,952
4,823,176
4,933,740
4,567,641
4,639,762
4,783,690
4,837,606
4,963,951
相關(guān)PDF資料
PDF描述
HGTG18N120BN CAT6A RISER, YELLOW, SPOOBULK CABLE
HGTG18N120BND CAT6A PVC GRAY F/UTP BULK CABLE
HGTG18N120BN CAT6A PVC WHITE F/UTP BULK CABLE
HGTG18N120BND CAT6A RISER, GRAY, SPOOL BULK CABLE
HGTG20N120CND 63A, 1200V, NPT Series N-Channel IGBT with Anti-Parallel Hyperfast Diode(63A, 1200V, NPT 系列帶超快二極管的N溝道絕緣柵雙極型晶體管)
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
HGTD8P50G1S 制造商:Rochester Electronics LLC 功能描述:- Bulk
HGTD8P50GIS 制造商:Harris Corporation 功能描述:
HGTG10N120BN 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:35A, 1200V, NPT Series N-Channel IGBT
HGTG10N120BND 功能描述:IGBT 晶體管 35A 1200V N-Ch RoHS:否 制造商:Fairchild Semiconductor 配置: 集電極—發(fā)射極最大電壓 VCEO:650 V 集電極—射極飽和電壓:2.3 V 柵極/發(fā)射極最大電壓:20 V 在25 C的連續(xù)集電極電流:150 A 柵極—射極漏泄電流:400 nA 功率耗散:187 W 最大工作溫度: 封裝 / 箱體:TO-247 封裝:Tube
HGTG10N120BND 制造商:Fairchild Semiconductor Corporation 功能描述:SINGLE IGBT 1.2KV 35A