參數(shù)資料
型號: HGTD3N60C3S
廠商: FAIRCHILD SEMICONDUCTOR CORP
元件分類: 功率晶體管
英文描述: 6A, 600V, UFS Series N-Channel IGBTs
中文描述: 6 A, 600 V, N-CHANNEL IGBT, TO-252AA
文件頁數(shù): 6/6頁
文件大?。?/td> 243K
代理商: HGTD3N60C3S
6
All Intersil semiconductor products are manufactured, assembled and tested under
ISO9000
quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site
www.intersil.com
Handling Precautions for IGBTs
Insulated Gate Bipolar Transistors are susceptible to gate-
insulation damage by the electrostatic discharge of energy
through the devices. When handling these devices, care
should be exercised to assure that the static charge built in the
handler’s body capacitance is not discharged through the
device. With proper handling and application procedures,
however, IGBTs are currently being extensively used in
production by numerous equipment manufacturers in military,
industrial and consumer applications, with virtually no
damage problems due to electrostatic discharge. IGBTs can
be handled safely if the following basic precautions are taken:
1. Prior to assembly into a circuit, all leads should be kept
shorted together either by the use of metal shorting
springs or by the insertion into conductive material such
as “ECCOSORBD
LD26” or equivalent.
2. When devices are removed by hand from their carriers,
the hand being used should be grounded by any suitable
means - for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from
circuits with power on.
5.
Gate Voltage Rating
- Never exceed the gate-voltage
rating of V
GEM
. Exceeding the rated V
GE
can result in
permanent damage to the oxide layer in the gate region.
6.
Gate Termination
- The gates of these devices are
essentially capacitors. Circuits that leave the gate open-
circuited or floating should be avoided. These conditions
can result in turn-on of the device due to voltage buildup
on the input capacitor due to leakage currents or pickup.
7.
Gate Protection
- These devices do not have an internal
monolithic zener diode from gate to emitter. If gate
protection is required an external zener is recommended.
Operating Frequency Information
Operating Frequency Information for a Typical Device
(Figure 13) is presented as a guide for estimating device
performance for a specific application. Other typical
frequency vs collector current (I
CE
) plots are possible using
the information shown for a typical unit in Figures 4, 7, 8, 11
and 12. The operating frequency plot (Figure 13) of a typical
device shows f
MAX1
or f
MAX2
whichever is smaller at each
point. The information is based on measurements of a
typical device and is bounded by the maximum rated
junction temperature.
f
MAX1
is defined by f
MAX1
= 0.05/(t
d(OFF)I
+ t
d(ON)I
).
Deadtime (the denominator) has been arbitrarily held to 10%
of the on- state time for a 50% duty factor. Other definitions
are possible. t
d(OFF)I
and t
d(ON)I
are defined in Figure 19.
Device turn-off delay can establish an additional frequency
limiting condition for an application other than T
JM
. t
d(OFF)I
is important when controlling output ripple under a lightly
loaded condition.
f
MAX2
is defined by f
MAX2
= (P
D
- P
C
)/(E
OFF
+ E
ON
). The
allowable dissipation (P
D
) is defined by P
D
= (T
JM
- T
C
)/R
θ
JC
.
The sum of device switching and conduction losses must
not exceed P
D
. A 50% duty factor was used (Figure 13)
and the conduction losses (P
C
) are approximated by
P
C
= (V
CE
x I
CE
)/2.
E
ON
and E
OFF
are defined in the switching waveforms
shown in Figure 19. E
ON
is the integral of the instantaneous
power loss (I
CE
x V
CE
) during turn-on and E
OFF
is the
integral of the instantaneous power loss (I
CE
x V
CE
) during
turn-off. All tail losses are included in the calculation for
E
OFF
; i.e., the collector current equals zero (I
CE
= 0).
Test Circuit and Waveform
FIGURE 18. INDUCTIVE SWITCHING TEST CIRCUIT
FIGURE 19. SWITCHING TEST WAVEFORMS
R
G
= 82
L = 1mH
V
DD
= 480V
+
-
RHRD460
t
fI
t
d(OFF)I
t
rI
t
d(ON)I
10%
90%
10%
90%
V
CE
I
CE
V
GE
E
OFF
E
ON
HGTD3N60C3S, HGTP3N60C3
ECCOSORBD is a Trademark of Emerson and Cumming, Inc.
相關(guān)PDF資料
PDF描述
HGTD8P50G1S 8A, 500V P-Channel IGBTs
HGTD8P50G1 Mechanism, 2-inch w/front paper feed and partial cutter
HGTG18N120BN CAT6A RISER, YELLOW, SPOOBULK CABLE
HGTG18N120BND CAT6A PVC GRAY F/UTP BULK CABLE
HGTG18N120BN CAT6A PVC WHITE F/UTP BULK CABLE
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
HGTD3N60C3S9A 功能描述:IGBT 晶體管 6a 600V N-Ch IGBT UFS Series RoHS:否 制造商:Fairchild Semiconductor 配置: 集電極—發(fā)射極最大電壓 VCEO:650 V 集電極—射極飽和電壓:2.3 V 柵極/發(fā)射極最大電壓:20 V 在25 C的連續(xù)集電極電流:150 A 柵極—射極漏泄電流:400 nA 功率耗散:187 W 最大工作溫度: 封裝 / 箱體:TO-247 封裝:Tube
HGTD6N40E1 制造商:Rochester Electronics LLC 功能描述:- Bulk 制造商:Harris Corporation 功能描述:
HGTD6N40E1S 制造商:Harris Corporation 功能描述:
HGTD6N50E1 制造商:Harris Corporation 功能描述:
HGTD6N50E1S 制造商:Rochester Electronics LLC 功能描述: