I2C MA" />
鍙冩暩(sh霉)璩囨枡
鍨嬭櫉锛� ATMEGA649V-8MI
寤犲晢锛� Atmel
鏂囦欢闋佹暩(sh霉)锛� 28/146闋�
鏂囦欢澶�?銆�?/td> 0K
鎻忚堪锛� IC AVR MCU FLASH 64K 1.8V 64QFN
鐢�(ch菐n)鍝佸煿瑷撴ā濉婏細 megaAVR Introduction
妯欐簴鍖呰锛� 260
绯诲垪锛� AVR® ATmega
鏍稿績铏曠悊鍣細 AVR
鑺珨灏哄锛� 8-浣�
閫熷害锛� 8MHz
閫i€氭€э細 SPI锛孶ART/USART锛孶SI
澶栧湇瑷�(sh猫)鍌欙細 娆犲妾㈡脯/寰╀綅锛孡CD锛孭OR锛孭WM锛學DT
杓稿叆/杓稿嚭鏁�(sh霉)锛� 53
绋嬪簭瀛樺劜鍣ㄥ閲忥細 64KB锛�32K x 16锛�
绋嬪簭瀛樺劜鍣ㄩ鍨嬶細 闁冨瓨
EEPROM 澶у皬锛� 2K x 8
RAM 瀹归噺锛� 4K x 8
闆诲 - 闆绘簮 (Vcc/Vdd)锛� 1.8 V ~ 5.5 V
鏁�(sh霉)鎿�(j霉)杞�(zhu菐n)鎻涘櫒锛� A/D 8x10b
鎸暕鍣ㄥ瀷锛� 鍏�(n猫i)閮�
宸ヤ綔婧害锛� -40°C ~ 85°C
灏佽/澶栨锛� 64-VFQFN 瑁搁湶鐒婄洡
鍖呰锛� 鎵樼洡
绗�1闋�绗�2闋�绗�3闋�绗�4闋�绗�5闋�绗�6闋�绗�7闋�绗�8闋�绗�9闋�绗�10闋�绗�11闋�绗�12闋�绗�13闋�绗�14闋�绗�15闋�绗�16闋�绗�17闋�绗�18闋�绗�19闋�绗�20闋�绗�21闋�绗�22闋�绗�23闋�绗�24闋�绗�25闋�绗�26闋�绗�27闋�鐣跺墠绗�28闋�绗�29闋�绗�30闋�绗�31闋�绗�32闋�绗�33闋�绗�34闋�绗�35闋�绗�36闋�绗�37闋�绗�38闋�绗�39闋�绗�40闋�绗�41闋�绗�42闋�绗�43闋�绗�44闋�绗�45闋�绗�46闋�绗�47闋�绗�48闋�绗�49闋�绗�50闋�绗�51闋�绗�52闋�绗�53闋�绗�54闋�绗�55闋�绗�56闋�绗�57闋�绗�58闋�绗�59闋�绗�60闋�绗�61闋�绗�62闋�绗�63闋�绗�64闋�绗�65闋�绗�66闋�绗�67闋�绗�68闋�绗�69闋�绗�70闋�绗�71闋�绗�72闋�绗�73闋�绗�74闋�绗�75闋�绗�76闋�绗�77闋�绗�78闋�绗�79闋�绗�80闋�绗�81闋�绗�82闋�绗�83闋�绗�84闋�绗�85闋�绗�86闋�绗�87闋�绗�88闋�绗�89闋�绗�90闋�绗�91闋�绗�92闋�绗�93闋�绗�94闋�绗�95闋�绗�96闋�绗�97闋�绗�98闋�绗�99闋�绗�100闋�绗�101闋�绗�102闋�绗�103闋�绗�104闋�绗�105闋�绗�106闋�绗�107闋�绗�108闋�绗�109闋�绗�110闋�绗�111闋�绗�112闋�绗�113闋�绗�114闋�绗�115闋�绗�116闋�绗�117闋�绗�118闋�绗�119闋�绗�120闋�绗�121闋�绗�122闋�绗�123闋�绗�124闋�绗�125闋�绗�126闋�绗�127闋�绗�128闋�绗�129闋�绗�130闋�绗�131闋�绗�132闋�绗�133闋�绗�134闋�绗�135闋�绗�136闋�绗�137闋�绗�138闋�绗�139闋�绗�140闋�绗�141闋�绗�142闋�绗�143闋�绗�144闋�绗�145闋�绗�146闋�
PIC16(L)F1825/1829
DS41440C-page 276
2010-2012 Microchip Technology Inc.
25.6.6
I2C MASTER MODE
TRANSMISSION
Transmission of a data byte, a 7-bit address or the
other half of a 10-bit address is accomplished by simply
writing a value to the SSPxBUF register. This action will
set the Buffer Full flag bit, BF and allow the Baud Rate
Generator to begin counting and start the next
transmission. Each bit of address/data will be shifted
out onto the SDAx pin after the falling edge of SCLx is
asserted. SCLx is held low for one Baud Rate
Generator rollover count (TBRG). Data should be valid
before SCLx is released high. When the SCLx pin is
released high, it is held that way for TBRG. The data on
the SDAx pin must remain stable for that duration and
some hold time after the next falling edge of SCLx.
After the eighth bit is shifted out (the falling edge of the
eighth clock), the BF flag is cleared and the master
releases SDAx. This allows the slave device being
addressed to respond with an ACK bit during the ninth
bit time if an address match occurred, or if data was
received properly. The status of ACK is written into the
ACKSTAT bit on the rising edge of the ninth clock. If the
master receives an Acknowledge, the Acknowledge
Status bit, ACKSTAT, is cleared. If not, the bit is set.
After the ninth clock, the SSPxIF bit is set and the
master clock (Baud Rate Generator) is suspended until
the next data byte is loaded into the SSPxBUF, leaving
SCLx low and SDAx unchanged (Figure 25-28).
After the write to the SSPxBUF, each bit of the address
will be shifted out on the falling edge of SCLx until all
seven address bits and the R/W bit are completed. On
the falling edge of the eighth clock, the master will
release the SDAx pin, allowing the slave to respond
with an Acknowledge. On the falling edge of the ninth
clock, the master will sample the SDAx pin to see if the
address was recognized by a slave. The status of the
ACK bit is loaded into the ACKSTAT Status bit of the
SSPxCON2 register. Following the falling edge of the
ninth clock transmission of the address, the SSPxIF is
set, the BF flag is cleared and the Baud Rate Generator
is turned off until another write to the SSPxBUF takes
place, holding SCLx low and allowing SDAx to float.
25.6.6.1
BF Status Flag
In Transmit mode, the BF bit of the SSPxSTAT register
is set when the CPU writes to SSPxBUF and is cleared
when all eight bits are shifted out.
25.6.6.2
WCOL Status Flag
If the user writes the SSPxBUF when a transmit is
already in progress (i.e., SSPxSR is still shifting out a
data byte), the WCOL bit is set and the contents of the
buffer are unchanged (the write does not occur).
WCOL must be cleared by software before the next
transmission.
25.6.6.3
ACKSTAT Status Flag
In Transmit mode, the ACKSTAT bit of the SSPxCON2
register is cleared when the slave has sent an
Acknowledge (ACK = 0) and is set when the slave
does not Acknowledge (ACK = 1). A slave sends an
Acknowledge when it has recognized its address
(including a general call), or when the slave has
properly received its data.
25.6.6.4
Typical Transmit Sequence:
1.
The user generates a Start condition by setting
the SEN bit of the SSPxCON2 register.
2.
SSPxIF is set by hardware on completion of the
Start.
3.
SSPxIF is cleared by software.
4.
The MSSPx module will wait the required start
time before any other operation takes place.
5.
The user loads the SSPxBUF with the slave
address to transmit.
6.
Address is shifted out the SDAx pin until all eight
bits are transmitted. Transmission begins as
soon as SSPxBUF is written to.
7.
The MSSPx module shifts in the ACK bit from
the slave device and writes its value into the
ACKSTAT bit of the SSPxCON2 register.
8.
The MSSPx module generates an interrupt at
the end of the ninth clock cycle by setting the
SSPxIF bit.
9.
The user loads the SSPxBUF with eight bits of
data.
10. Data is shifted out the SDAx pin until all eight
bits are transmitted.
11. The MSSPx module shifts in the ACK bit from
the slave device and writes its value into the
ACKSTAT bit of the SSPxCON2 register.
12. Steps 8-11 are repeated for all transmitted data
bytes.
13. The user generates a Stop or Restart condition
by setting the PEN or RSEN bits of the
SSPxCON2 register. Interrupt is generated once
the Stop/Restart condition is complete.
鐩搁棞(gu膩n)PDF璩囨枡
PDF鎻忚堪
ATMEGA8515L-8JUR MCU AVR 8KB FLASH 8MHZ 44PLCC
ATMEGA8515L-8PJ IC MCU AVR 8K 5V 8MHZ 40-DIP
ATMEGA8535-16JUR MCU AVR 8K FLASH 16MHZ 44PLCC
ATMEGA8535L-8PJ IC MCU AVR 8K 5V 8MHZ 40-DIP
ATMEGA88-15MT2 MCU AVR 8K FLASH 15MHZ 32-QFN
鐩搁棞(gu膩n)浠g悊鍟�/鎶€琛�(sh霉)鍙冩暩(sh霉)
鍙冩暩(sh霉)鎻忚堪
ATmega649V-8MU 鍔熻兘鎻忚堪:8浣嶅井鎺у埗鍣� -MCU AVR 64K FLASH 2K EE 4K SRAM ADC LCD RoHS:鍚� 鍒堕€犲晢:Silicon Labs 鏍稿績:8051 铏曠悊鍣ㄧ郴鍒�:C8051F39x 鏁�(sh霉)鎿�(j霉)绺界窔瀵害:8 bit 鏈€澶ф檪閻橀牷鐜�:50 MHz 绋嬪簭瀛樺劜鍣ㄥぇ灏�:16 KB 鏁�(sh霉)鎿�(j霉) RAM 澶у皬:1 KB 鐗囦笂 ADC:Yes 宸ヤ綔闆绘簮闆诲:1.8 V to 3.6 V 宸ヤ綔婧害鑼冨湇:- 40 C to + 105 C 灏佽 / 绠遍珨:QFN-20 瀹夎棰ㄦ牸:SMD/SMT
ATMEGA649V-8MUR 鍔熻兘鎻忚堪:8浣嶅井鎺у埗鍣� -MCU AVR 64KB FLSH 2KB EE 4KB SRAM LCD8MHz1.8V RoHS:鍚� 鍒堕€犲晢:Silicon Labs 鏍稿績:8051 铏曠悊鍣ㄧ郴鍒�:C8051F39x 鏁�(sh霉)鎿�(j霉)绺界窔瀵害:8 bit 鏈€澶ф檪閻橀牷鐜�:50 MHz 绋嬪簭瀛樺劜鍣ㄥぇ灏�:16 KB 鏁�(sh霉)鎿�(j霉) RAM 澶у皬:1 KB 鐗囦笂 ADC:Yes 宸ヤ綔闆绘簮闆诲:1.8 V to 3.6 V 宸ヤ綔婧害鑼冨湇:- 40 C to + 105 C 灏佽 / 绠遍珨:QFN-20 瀹夎棰ㄦ牸:SMD/SMT
ATMEGA64A-AN 鍔熻兘鎻忚堪:8浣嶅井鎺у埗鍣� -MCU 16MHz 105C RoHS:鍚� 鍒堕€犲晢:Silicon Labs 鏍稿績:8051 铏曠悊鍣ㄧ郴鍒�:C8051F39x 鏁�(sh霉)鎿�(j霉)绺界窔瀵害:8 bit 鏈€澶ф檪閻橀牷鐜�:50 MHz 绋嬪簭瀛樺劜鍣ㄥぇ灏�:16 KB 鏁�(sh霉)鎿�(j霉) RAM 澶у皬:1 KB 鐗囦笂 ADC:Yes 宸ヤ綔闆绘簮闆诲:1.8 V to 3.6 V 宸ヤ綔婧害鑼冨湇:- 40 C to + 105 C 灏佽 / 绠遍珨:QFN-20 瀹夎棰ㄦ牸:SMD/SMT
ATMEGA64A-ANR 鍔熻兘鎻忚堪:8浣嶅井鎺у埗鍣� -MCU 16MHz 105C RoHS:鍚� 鍒堕€犲晢:Silicon Labs 鏍稿績:8051 铏曠悊鍣ㄧ郴鍒�:C8051F39x 鏁�(sh霉)鎿�(j霉)绺界窔瀵害:8 bit 鏈€澶ф檪閻橀牷鐜�:50 MHz 绋嬪簭瀛樺劜鍣ㄥぇ灏�:16 KB 鏁�(sh霉)鎿�(j霉) RAM 澶у皬:1 KB 鐗囦笂 ADC:Yes 宸ヤ綔闆绘簮闆诲:1.8 V to 3.6 V 宸ヤ綔婧害鑼冨湇:- 40 C to + 105 C 灏佽 / 绠遍珨:QFN-20 瀹夎棰ㄦ牸:SMD/SMT
ATMEGA64A-AU 鍔熻兘鎻忚堪:8浣嶅井鎺у埗鍣� -MCU 64K Flsh 2K EEPROM 4K SRAM 16MHz RoHS:鍚� 鍒堕€犲晢:Silicon Labs 鏍稿績:8051 铏曠悊鍣ㄧ郴鍒�:C8051F39x 鏁�(sh霉)鎿�(j霉)绺界窔瀵害:8 bit 鏈€澶ф檪閻橀牷鐜�:50 MHz 绋嬪簭瀛樺劜鍣ㄥぇ灏�:16 KB 鏁�(sh霉)鎿�(j霉) RAM 澶у皬:1 KB 鐗囦笂 ADC:Yes 宸ヤ綔闆绘簮闆诲:1.8 V to 3.6 V 宸ヤ綔婧害鑼冨湇:- 40 C to + 105 C 灏佽 / 绠遍珨:QFN-20 瀹夎棰ㄦ牸:SMD/SMT