參數(shù)資料
型號(hào): AM41LV3204MT10IT
廠商: ADVANCED MICRO DEVICES INC
元件分類: 存儲(chǔ)器
英文描述: Stacked Multi-chip Package (MCP) 32 Mbit (4 M x 8 bit/2 M x 16-bit) Flash Memory and 4 Mbit (512K x 8-Bit/256 K x 16-Bit) Static RAM
中文描述: SPECIALTY MEMORY CIRCUIT, PBGA69
封裝: 8 X 10 MM, 1.20 MM HEIGHT, FBGA-69
文件頁數(shù): 28/67頁
文件大?。?/td> 484K
代理商: AM41LV3204MT10IT
June 10, 2003
Am41LV3204M
27
P R E L I M I N A R Y
next, which in turn initiate the Embedded Program al-
gorithm. The system is
not
required to provide further
controls or timings. The device automatically provides
internally generated program pulses and verifies the
programmed cell margin. Tables
10
and
13
show the
address and data requirements for the word program
command sequence.
When the Embedded Program algorithm is complete,
the device then returns to the read mode and ad-
dresses are no longer latched. The system can deter-
mine the status of the program operation by using
DQ7 or DQ6. Refer to the
Write Operation Status
sec-
tion for information on these status bits.
Any commands written to the device during the Em-
bedded Program Algorithm are ignored.
Note that a
hardware reset
immediately terminates the program
operation.
The program command sequence should
be reinitiated once the device has returned to the read
mode, to ensure data integrity.
Note that the SecSi
Sector, autoselect, and CFI functions are unavailable
when a program operation is in progress.
Programming is allowed in any sequence and across
sector boundaries.
A bit cannot be programmed
from “0” back to a “1.”
Attempting to do so may
cause the device to set DQ5 = 1, or cause the DQ7
and DQ6 status bits to indicate the operation was suc-
cessful. However, a succeeding read will show that the
data is still “0.” Only erase operations can convert a
“0” to a “1.”
Unlock Bypass Command Sequence
The unlock bypass feature allows the system to pro-
gram words to the device faster than using the stan-
dard program command sequence. The unlock
bypass command sequence is initiated by first writing
two unlock cycles. This is followed by a third write
cycle containing the unlock bypass command, 20h.
The device then enters the unlock bypass mode. A
two-cycle unlock bypass program command sequence
is all that is required to program in this mode. The first
cycle in this sequence contains the unlock bypass pro-
gram command, A0h; the second cycle contains the
program address and data. Additional data is pro-
grammed in the same manner. This mode dispenses
with the initial two unlock cycles required in the stan-
dard program command sequence, resulting in faster
total programming time. Tables
10
and
13
show the re-
quirements for the command sequence.
During the unlock bypass mode, only the Unlock By-
pass Program and Unlock Bypass Reset commands
are valid. To exit the unlock bypass mode, the system
must issue the two-cycle unlock bypass reset com-
mand sequence. The first cycle must contain the data
90h. The second cycle must contain the data 00h. The
device then returns to the read mode.
Write Buffer Programming
Write Buffer Programming allows the system write to a
maximum of 16 words in one programming operation.
This results in faster effective programming time than
the standard programming algorithms. The Write
Buffer Programming command sequence is initiated
by first writing two unlock cycles. This is followed by a
third write cycle containing the Write Buffer Load com-
mand written at the Sector Address in which program-
ming will occur. The fourth cycle writes the sector
address and the number of word locations, minus one,
to be programmed. For example, if the system will pro-
gram 6 unique address locations, then 05h should be
written to the device. This tells the device how many
write buffer addresses will be loaded with data and
therefore when to expect the Program Buffer to Flash
command. The number of locations to program cannot
exceed the size of the write buffer or the operation will
abort.
The fifth cycle writes the first address location and
data to be programmed. The write-buffer-page is se-
lected by address bits A
MAX
–A
4
. All subsequent ad-
dress/data
pairs
must
selected-write-buffer-page. The system then writes the
remaining address/data pairs into the write buffer.
Write buffer locations may be loaded in any order.
fall
within
the
The write-buffer-page address must be the same for
all address/data pairs loaded into the write buffer. This
means Write Buffer Programming cannot be per-
formed across multiple write-buffer pages. This also
means that Write Buffer Programming cannot be per-
formed across multiple sectors. If the system attempts
to load programming data outside of the selected
write-buffer page, the operation will abort.
Note that if a Write Buffer address location is loaded
multiple times, the address/data pair counter will be
decremented for every data load operation. The host
system must therefore account for loading a
write-buffer location more than once. The counter
decrements for each data load operation, not for each
unique write-buffer-address location. Note also that if
an address location is loaded more than once into the
buffer, the final data loaded for that address will be
programmed.
Once the specified number of write buffer locations
have been loaded, the system must then write the Pro-
gram Buffer to Flash command at the sector address.
Any other address and data combination aborts the
Write Buffer Programming operation. The device then
begins programming. Data polling should be used
while monitoring the last address location loaded into
the write buffer. DQ7, DQ6, DQ5, and DQ1 should be
monitored to determine the device status during Write
Buffer Programming.
相關(guān)PDF資料
PDF描述
AM41PDS3224DT110IT 32 Megabit (2 M x 16-Bit) CMOS 1.8 Volt-only, Simultaneous Operation, Page Mode Flash Memory and 4 Mbit (512 K x 8-Bit/256 K x 16-Bit) Static RAM
AM41PDS3224DB100IS 32 Megabit (2 M x 16-Bit) CMOS 1.8 Volt-only, Simultaneous Operation, Page Mode Flash Memory and 4 Mbit (512 K x 8-Bit/256 K x 16-Bit) Static RAM
AM41PDS3224DB100IT 32 Megabit (2 M x 16-Bit) CMOS 1.8 Volt-only, Simultaneous Operation, Page Mode Flash Memory and 4 Mbit (512 K x 8-Bit/256 K x 16-Bit) Static RAM
AM41PDS3224DB10IS 32 Megabit (2 M x 16-Bit) CMOS 1.8 Volt-only, Simultaneous Operation, Page Mode Flash Memory and 4 Mbit (512 K x 8-Bit/256 K x 16-Bit) Static RAM
AM41PDS3224DB10IT 32 Megabit (2 M x 16-Bit) CMOS 1.8 Volt-only, Simultaneous Operation, Page Mode Flash Memory and 4 Mbit (512 K x 8-Bit/256 K x 16-Bit) Static RAM
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AM41LV320MB10IS 制造商:SPANSION 制造商全稱:SPANSION 功能描述:Stacked Multi-chip Package (MCP) 32 Mbit (4 M x 8 bit/2 M x 16-bit) Flash Memory and 4 Mbit (512K x 8-Bit/256 K x 16-Bit) Static RAM
AM41LV320MB10IT 制造商:SPANSION 制造商全稱:SPANSION 功能描述:Stacked Multi-chip Package (MCP) 32 Mbit (4 M x 8 bit/2 M x 16-bit) Flash Memory and 4 Mbit (512K x 8-Bit/256 K x 16-Bit) Static RAM
AM41LV320MT10IS 制造商:SPANSION 制造商全稱:SPANSION 功能描述:Stacked Multi-chip Package (MCP) 32 Mbit (4 M x 8 bit/2 M x 16-bit) Flash Memory and 4 Mbit (512K x 8-Bit/256 K x 16-Bit) Static RAM
AM41LV320MT10IT 制造商:SPANSION 制造商全稱:SPANSION 功能描述:Stacked Multi-chip Package (MCP) 32 Mbit (4 M x 8 bit/2 M x 16-bit) Flash Memory and 4 Mbit (512K x 8-Bit/256 K x 16-Bit) Static RAM
AM41PDS3224D 制造商:未知廠家 制造商全稱:未知廠家 功能描述:32 Mbit (2 M x 16-Bit) CMOS 1.8 Volt-only. Simultaneous Operation Page Mode Flash Memory and 4 Mbit (512 K x 8-Bit/256 K x 16-Bit) Static RAM (Preliminary)