參數(shù)資料
型號: AD9239BCPZ-170
廠商: Analog Devices Inc
文件頁數(shù): 11/40頁
文件大小: 0K
描述: IC ADC 12BIT DUAL 170MSPS 72PIN
標(biāo)準(zhǔn)包裝: 1
位數(shù): 12
采樣率(每秒): 170M
數(shù)據(jù)接口: 串行,SPI?
轉(zhuǎn)換器數(shù)目: 4
功率耗散(最大): 1.22W
電壓電源: 單電源
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 72-VFQFN 裸露焊盤,CSP
供應(yīng)商設(shè)備封裝: 72-LFCSP
包裝: 托盤
輸入數(shù)目和類型: 8 個單端,單極;4 個差分,單極
Data Sheet
AD9239
Rev. C | Page 19 of 40
THEORY OF OPERATION
The AD9239 architecture consists of a differential input buffer,
front-end sample-and-hold amplifier (SHA) followed by a
pipelined switched capacitor ADC. The quantized outputs from
each stage are combined into a final 12-bit result in the digital
correction logic. The pipelined architecture permits the first
stage to operate on a new input sample, while the remaining
stages operate on preceding samples. Sampling occurs on the
rising edge of the clock.
Each stage of the pipeline, excluding the last, consists of a low
resolution flash ADC connected to a switched capacitor DAC
and interstage residue amplifier (for example, a multiplying
digital-to-analog converter (MDAC)). The residue amplifier
magnifies the difference between the reconstructed DAC output
and the flash input for the next stage in the pipeline. One bit of
redundancy is used in each stage to facilitate digital correction
of flash errors. The last stage simply consists of a flash ADC.
The input stage contains a differential SHA that can be ac- or
dc-coupled in differential or single-ended mode. The output of
the pipeline ADC is put into its final serial format by the data
serializer, encoder, and CML drivers block. The data rate multiplier
creates the clock used to output the high speed serial data at the
CML outputs.
ANALOG INPUT CONSIDERATIONS
The analog input to the AD9239 is a differential buffer. This
input is optimized to provide superior wideband performance
and requires that the analog inputs be driven differentially. SNR
and SINAD performance degrades if the analog input is driven
with a single-ended signal.
For best dynamic performance, the source impedances driving
VIN + x and VIN x should be matched such that common-
mode settling errors are symmetrical. These errors are reduced
by the common-mode rejection of the ADC. A small resistor in
series with each input can help reduce the peak transient current
injected from the output stage of the driving source.
In addition, low-Q inductors or ferrite beads can be placed on
each leg of the input to reduce high differential capacitance at
the analog inputs and therefore achieve the maximum bandwidth
of the ADC. Such use of low-Q inductors or ferrite beads is
required when driving the converter front end at high intermediate
frequency (IF). Either a shunt capacitor or two single-ended capac-
itors can be placed on the inputs to provide a matching passive
network. This ultimately creates a low-pass filter at the input to
limit unwanted broadband noise. See the AN-827 Application Note
and the Analog Dialogue article “Transformer-Coupled Front-End
for Wideband A/D Converters” (Volume 39, April 2005) for more
information on this subject. In general, the precise values depend
on the application.
Maximum SNR performance is achieved by setting the ADC to
the largest span in a differential configuration. In the case of the
AD9239, the default input span is 1.25 V p-p. To configure the
ADC for a different input span, see Register 18. For the best
performance, an input span of 1.25 V p-p or greater should be
used (see Table 15 for details).
Differential Input Configurations
There are several ways to drive the AD9239 either actively or
passively; in either case, optimum performance is achieved by
driving the analog input differentially. For example, using the
ADA4937 differential amplifier to drive the AD9239 provides
excellent performance and a flexible interface to the ADC (see
Figure 45 and Figure 46) for baseband and second Nyquist
(~100 MHz IF) applications. In either application, 1% resistors
should be used for good gain matching. It should also be noted
that the dc-coupled configuration will show some degradation
in spurious performance. For further reference, consult the
ADA4937 data sheet.
SIGNAL
GENERATOR
+VS
–VS
3.3V
205
200
10k
62
10k
27
0.1F
1.25V p-p
ADA4937
G = UNITY
VIN + x
VIN – x
OPTIONAL C
33
24
0.1F
R
C
AVDD
DRVDD
1.8V
AD9239
ADC INPUT
IMPEDANCE
06980-
090
1.65V
VOCM
Figure 45. Differential Amplifier Configuration for AC-Coupled Baseband Applications
SIGNAL
GENERATOR
+VS
–VS
3.3V
205
200
62
27
0.1F
1.25V p-p
ADA4937
G = UNITY
VIN + x
VIN – x
OPTIONAL C
33
24
R
C
AVDD
DRVDD
1.8V
AD9239
ADC INPUT
IMPEDANCE
06980-
091
VOCM
VCMx
1.4V
Figure 46. Differential Amplifier Configuration for DC-Coupled Baseband Applications
相關(guān)PDF資料
PDF描述
AD9240AS IC ADC 14BIT 10MSPS 44-MQFP
AD9241ASZRL IC ADC 14BIT SGL 1.25MSPS 44MQFP
AD9243ASZRL IC ADC 14BIT SGL 3MSPS 44MQFP
AD9244BSTZRL-65 IC ADC 14BIT SGL 65MSPS 48LQFP
AD9245BCPZRL7-80 IC ADC 14BIT SGL 80MSPS 32LFCSP
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD9239BCPZ-210 功能描述:模數(shù)轉(zhuǎn)換器 - ADC Quad 12 Bit 210 MSPS Serial ADC RoHS:否 制造商:Analog Devices 通道數(shù)量: 結(jié)構(gòu): 轉(zhuǎn)換速率: 分辨率: 輸入類型: 信噪比: 接口類型: 工作電源電壓: 最大工作溫度: 安裝風(fēng)格: 封裝 / 箱體:
AD9239BCPZ-250 功能描述:模數(shù)轉(zhuǎn)換器 - ADC Quad 12 Bit 250 MSPS Serial ADC RoHS:否 制造商:Analog Devices 通道數(shù)量: 結(jié)構(gòu): 轉(zhuǎn)換速率: 分辨率: 輸入類型: 信噪比: 接口類型: 工作電源電壓: 最大工作溫度: 安裝風(fēng)格: 封裝 / 箱體:
AD9240 制造商:AD 制造商全稱:Analog Devices 功能描述:Complete 14-Bit, 10 MSPS Monolithic A/D Converter
AD9240AS 功能描述:IC ADC 14BIT 10MSPS 44-MQFP RoHS:否 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:1 系列:- 位數(shù):14 采樣率(每秒):83k 數(shù)據(jù)接口:串行,并聯(lián) 轉(zhuǎn)換器數(shù)目:1 功率耗散(最大):95mW 電壓電源:雙 ± 工作溫度:0°C ~ 70°C 安裝類型:通孔 封裝/外殼:28-DIP(0.600",15.24mm) 供應(yīng)商設(shè)備封裝:28-PDIP 包裝:管件 輸入數(shù)目和類型:1 個單端,雙極
AD9240ASRL 功能描述:IC ADC 14BIT 10MSPS 44-MQFP RoHS:否 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:1 系列:- 位數(shù):14 采樣率(每秒):83k 數(shù)據(jù)接口:串行,并聯(lián) 轉(zhuǎn)換器數(shù)目:1 功率耗散(最大):95mW 電壓電源:雙 ± 工作溫度:0°C ~ 70°C 安裝類型:通孔 封裝/外殼:28-DIP(0.600",15.24mm) 供應(yīng)商設(shè)備封裝:28-PDIP 包裝:管件 輸入數(shù)目和類型:1 個單端,雙極