2
REV.G
AD7711
–7–
PIN FUNCTION DESCRIPTIONS
Pin
Mnemonic
Function
1
SCLK
Serial Clock. Logic input/output, depending on the status of the MODE pin. When MODE is high, the
device is in its self-clocking mode, and the SCLK pin provides a serial clock output. This SCLK becomes
active when
RFS or TFS goes low, and goes high impedance when either RFS or TFS returns high or when
the device has completed transmission of an output word. When MODE is low, the device is in its external
clocking mode and the SCLK pin acts as an input. This input serial clock can be a continuous clock with all
data transmitted in a continuous train of pulses. Alternatively, it can be a noncontinuous clock with the
information being transmitted to the AD7711 in smaller batches of data.
2
MCLK IN
Master Clock Signal for the Device. This can be provided in the form of a crystal or external clock. A crystal can
be tied across the MCLK IN and MCLK OUT pins. Alternatively, the MCLK IN pin can be driven with a
CMOS-compatible clock and MCLK OUT left unconnected. The clock input frequency is nominally 10 MHz.
3
MCLK OUT
When the master clock for the device is a crystal, the crystal is connected between MCLK IN and MCLK OUT.
4A0Address Input. With this input low, reading and writing to the device is to the control register. With this input
high, access is to either the data register or the calibration registers.
5
SYNC
Logic Input. Allows for synchronization of the digital filters when using a number of AD7711s. It resets
the nodes of the digital filter.
6
MODE
Logic Input. When this pin is high, the device is in its self-clocking mode; with this pin low, the device is in its
external clocking mode.
7
AIN1(+)
Analog Input Channel 1. Positive input of the programmable gain differential analog input. The AIN1(+) input
is connected to an output current source that can be used to check that an external transducer has burned out
or gone open circuit. This output current source can be turned on/off via the control register.
8
AIN1(–)
Analog Input Channel 1. Negative input of the programmable gain differential analog input.
9
RTD1
Constant Current Output. A nominal 200
mA constant current is provided at this pin; this current can be
used as the excitation current for RTDs. This current can be turned on or off via the control register.
10
RTD2
Constant Current Output. A nominal 200
mA constant current is provided at this pin; this current can be
used as the excitation current for RTDs. This current can be turned on or off via the control register, and
can be used to eliminate lead resistance errors in 3-wire RTD configurations.
11
VSS
Analog Negative Supply, 0 V to –5 V. Tied to AGND for single-supply operation. The input voltage on AIN1
or AIN2 should not go > 30 mV negative w.r.t. VSS for correct operation of the device.
12
AVDD
Analog Positive Supply Voltage, 5 V to 10 V.
13
VBIAS
Input Bias Voltage. This input voltage should be set such that VBIAS + 0.85
VREF < AVDD and VBIAS – 0.85
VREF > VSS where VREF is REF IN(+) – REF IN(–). Ideally, this should be tied halfway between AVDD
and VSS. Thus with AVDD = 5 V and VSS = 0 V, it can be tied to REF OUT; with AVDD = +5 V and
VSS = –5 V, it can be tied to AGND; with AVDD = 10 V, it can be tied to 5 V.
14
REF IN(–)
Reference Input. The REF IN(–) can lie anywhere between AVDD and VSS provided REF IN(+) is greater
than REF IN(–).
15
REF IN(+)
Reference Input. The reference input is differential provided REF IN(+) is greater than REF IN(–).
REF IN(+) can lie anywhere between AVDD and VSS.
16
REF OUT
Reference Output. The internal 2.5 V reference is provided at this pin. This is a single-ended output
that is referred to AGND. It is a buffered output capable of providing 1 mA to an external load.
17
AIN2
Analog Input Channel 2. Single-ended programmable gain analog input.
18
AGND
Ground Reference Point for Analog Circuitry.
19
TFS
Transmit Frame Synchronization. Active low logic input used to write serial data to the device with serial
data expected after the falling edge of this pulse. In the self-clocking mode, the serial clock becomes active
after
TFS goes low. During a write operation to the AD7711, the SDATA line should not return to high
impedance until after
TFS returns high.